AuroraMaster
V.S.Vorobev (Talk | contribs) |
V.S.Vorobev (Talk | contribs) |
||
Line 48: | Line 48: | ||
The <code>run</code> method must be invoked at the end. | The <code>run</code> method must be invoked at the end. | ||
− | = | + | = AuroraConfig = |
+ | |||
+ | The AuroraConfig is a data structure very similar to python dict. It can contain nested lists, dicts and other AuroraConfig objects. An example below shows configuration of simple parametric simulation: | ||
+ | |||
+ | parsimCfg = AuroraConfig({ | ||
+ | 'Tracker' : { | ||
+ | 'deteff': 0.99, | ||
+ | 'ptcut': 50e-3, | ||
+ | 'bfield': 1.5, | ||
+ | 'maxCosth': np.cos(10./180. * np.pi), | ||
+ | 'momentumSampler' : { | ||
+ | 'mean' : np.zeros(3), | ||
+ | 'covar': np.diag(np.ones(3)) * 1.e-3**2 | ||
+ | }, | ||
+ | 'vertexSampler' : { | ||
+ | 'mean' : np.zeros(3), | ||
+ | 'covar': np.diag(np.ones(3)) * 1.e-3**2 | ||
+ | } | ||
+ | }, | ||
+ | 'PID' : { | ||
+ | 'eff' : 0.95, | ||
+ | 'sigmaKpi' : 6., | ||
+ | 'sigmaMupi' : 4., | ||
+ | 'sigmaKp' : 3., | ||
+ | 'sigmaE' : 3., | ||
+ | }, | ||
+ | 'Calorimeter' : { | ||
+ | 'deteff': 1.0, | ||
+ | 'energyThreshold' : 15e-3, | ||
+ | 'maxCosth' : np.cos(10./180. * np.pi), | ||
+ | 'sampler' : { | ||
+ | 'mean' : np.zeros(3), | ||
+ | 'covar': (np.diag(np.ones(3)) * 1.e-2**2).ravel() | ||
+ | } | ||
+ | } | ||
+ | }) | ||
+ | |||
+ | An AuroraConfig object can be serialized to and serialized from json with methods <code>to_json</code> and <code>from_json</code>. It is recommended to create json files with configuration using this interface, and not create json manualy. | ||
+ | |||
+ | = AuroraMaster components = | ||
All AuroraMaster class methods of the <code>add_{component}</code> format has two parameters: | All AuroraMaster class methods of the <code>add_{component}</code> format has two parameters: | ||
Line 63: | Line 102: | ||
If some parameter is specified in both json file and <code>AuroraConfig</code> object, the final value is taken from the <code>AuroraConfig</code> object. | If some parameter is specified in both json file and <code>AuroraConfig</code> object, the final value is taken from the <code>AuroraConfig</code> object. | ||
− | = | + | == add_edmi() == |
− | The | + | The AuroraMaster.add_edmi() method initialized ScTauDataSvc, instantiates a PodioInput class and has the following default configuration: |
− | + | edminputCfg = AuroraConfig({ | |
+ | 'name' : 'EDMReader', | ||
+ | 'olevel' : 'info', | ||
+ | 'filename': 'input.root', | ||
+ | 'collections': ['Particles'], | ||
+ | }) | ||
+ | |||
+ | == add_edmo() == | ||
+ | |||
+ | The AuroraMaster.add_edmo() method initialized ScTauDataSvc, instantiates a PodioOutput class and has the following default configuration: | ||
+ | |||
+ | edmoutputCfg = AuroraConfig({ | ||
+ | 'filename': 'output.root', | ||
+ | 'commands': ['keep *'], | ||
+ | 'olevel' : 'info', | ||
+ | }) | ||
+ | |||
+ | == add_parsim() == | ||
+ | |||
+ | The AuroraMaster.add_parsim() method initializes tools for parametric simulation and instantiates the required algorithm. Selection of specific implementation of the parametric simulation is done by the parameter `which`. The code snipped below shows how to plug in simple parametric simulation: | ||
+ | |||
+ | simplepartimCfg = AuroraConfig({ | ||
+ | 'olevel': 'info', | ||
'Tracker' : { | 'Tracker' : { | ||
'deteff': 0.99, | 'deteff': 0.99, | ||
Line 95: | Line 156: | ||
'sampler' : { | 'sampler' : { | ||
'mean' : np.zeros(3), | 'mean' : np.zeros(3), | ||
− | 'covar': | + | 'covar': np.diag(np.ones(3)) * 1.e-2**2 |
} | } | ||
} | } | ||
}) | }) | ||
+ | am.add_parsim(which='simple', cfg=parsimCfg) | ||
− | + | See [[Simple SCT parametric simulation|the detailed description]] of the simple SCT parametric simulation. | |
+ | |||
+ | == add_fullsim() == | ||
+ | |||
+ | fullsimCfg = AuroraConfig({ | ||
+ | 'detector': 'SimG4DD4hepDetector', | ||
+ | 'subsystems': ['ALL'], | ||
+ | 'physicslist': 'SimG4FtfpBert', | ||
+ | 'energyCut': 0.1 * units.GeV, | ||
+ | 'field' : { | ||
+ | 'Bz' : 1.0 * units.tesla, | ||
+ | 'rmax' : 100.0 * units.m, | ||
+ | 'zmax' : 100.0 * units.m | ||
+ | }, | ||
+ | 'olevel': 'info', | ||
+ | }) | ||
+ | |||
+ | == add_signal_provider() == | ||
+ | |||
+ | eventgenCfg = AuroraConfig({ | ||
+ | 'root' : 'vpho', | ||
+ | 'dec' : '', | ||
+ | 'ecms' : 0., | ||
+ | 'olevel': 'info', | ||
+ | }) | ||
+ | am.add_signal_provider('evtgen', evtgenCfg) | ||
+ | or | ||
+ | particlegunCfg = AuroraConfig({ | ||
+ | 'momentum' : np.array([0.1, 1.5]) * units.GeV, | ||
+ | 'phi': [0., 2*np.pi], | ||
+ | 'theta': np.array([10, 170]) * units.rad, | ||
+ | 'particles': [11, 13, 211], | ||
+ | 'olevel': 'info', | ||
+ | }) | ||
+ | am.add_signal_provider('gun', gunCfg) | ||
[[Category:Not_public]] | [[Category:Not_public]] |
Revision as of 14:29, 11 February 2021
Contents |
Introduction
The AuroraMaster package contains python classes providing high level interfaces to the Aurora algorithms and tools. The following tools are implemented in AuroraMaster at the moment:
- Read/write SCT EDM data
- Primary event generators
- Particle gun
- EvtGen
- Parametric simulation
- Main SCT parametric simulation
- Simple parametric simulation
- Full simulation with DD4Hep and Geant4
- Event analysis and selection with the Analysis package
- Access to reconstructed final-state-particles
- Reconstruction of particle decay trees
- Saving flat n-tuples for further physics analysis
The AuroraMaster class
Each job option employing AuroraMaster must contain one instance of the AuroraMaster class:
from AuroraMaster.auroramaster import AuroraMaster am = AuroraMaster(olvl='info')
The olvl
argument specifies the default output level: 'debug' or 'info', where the latter is used as the default.
The job option logic is formed by invoking methods of the AuroraMaster instance. Each method has the 'cfg' parameter that takes an AuroraConfig object.
The following example shows a ready-to-use job option for event generation with EvtGen and saving them to file in SCT EDM format:
from AuroraMaster.auroramaster import AuroraMaster, AuroraConfig # Instantiate AuroraMaster am = AuroraMaster('evtgen', 'info') # Plug in component for EvtGen evtgenCfg = AuroraConfig({ 'root' : 'psi(3770)', 'dec': './dkpi.dec' }) am.add_signal_provider('evtgen', evtgenCfg) # Plug in component for SCT EDM output edmoutputCfg = AuroraConfig{ 'filename': 'parsim.root', 'commands': ['keep *'], }) am.add_edmo(cfg=edmoutputCfg) am.run(evtmax=10**4)
The run
method must be invoked at the end.
AuroraConfig
The AuroraConfig is a data structure very similar to python dict. It can contain nested lists, dicts and other AuroraConfig objects. An example below shows configuration of simple parametric simulation:
parsimCfg = AuroraConfig({ 'Tracker' : { 'deteff': 0.99, 'ptcut': 50e-3, 'bfield': 1.5, 'maxCosth': np.cos(10./180. * np.pi), 'momentumSampler' : { 'mean' : np.zeros(3), 'covar': np.diag(np.ones(3)) * 1.e-3**2 }, 'vertexSampler' : { 'mean' : np.zeros(3), 'covar': np.diag(np.ones(3)) * 1.e-3**2 } }, 'PID' : { 'eff' : 0.95, 'sigmaKpi' : 6., 'sigmaMupi' : 4., 'sigmaKp' : 3., 'sigmaE' : 3., }, 'Calorimeter' : { 'deteff': 1.0, 'energyThreshold' : 15e-3, 'maxCosth' : np.cos(10./180. * np.pi), 'sampler' : { 'mean' : np.zeros(3), 'covar': (np.diag(np.ones(3)) * 1.e-2**2).ravel() } } })
An AuroraConfig object can be serialized to and serialized from json with methods to_json
and from_json
. It is recommended to create json files with configuration using this interface, and not create json manualy.
AuroraMaster components
All AuroraMaster class methods of the add_{component}
format has two parameters:
-
cfg
- an object of theAuroraConfig
class. Default value it None -
json
- string path to a json file with configuration. Default value it None
A component set up is dome with three steps:
- Default configuration
- Configuration with passed json file. It overwrites any subset of default parameters. Parameters not specified in json keep the default values
- Configuration with
AuroraConfig
object. It overrides values of the specified parameters leaving other parameters unchanged
If some parameter is specified in both json file and AuroraConfig
object, the final value is taken from the AuroraConfig
object.
add_edmi()
The AuroraMaster.add_edmi() method initialized ScTauDataSvc, instantiates a PodioInput class and has the following default configuration:
edminputCfg = AuroraConfig({ 'name' : 'EDMReader', 'olevel' : 'info', 'filename': 'input.root', 'collections': ['Particles'], })
add_edmo()
The AuroraMaster.add_edmo() method initialized ScTauDataSvc, instantiates a PodioOutput class and has the following default configuration:
edmoutputCfg = AuroraConfig({ 'filename': 'output.root', 'commands': ['keep *'], 'olevel' : 'info', })
add_parsim()
The AuroraMaster.add_parsim() method initializes tools for parametric simulation and instantiates the required algorithm. Selection of specific implementation of the parametric simulation is done by the parameter `which`. The code snipped below shows how to plug in simple parametric simulation:
simplepartimCfg = AuroraConfig({ 'olevel': 'info', 'Tracker' : { 'deteff': 0.99, 'ptcut': 50e-3, 'bfield': 1.5, 'maxCosth': np.cos(10./180. * np.pi), 'momentumSampler' : { 'mean' : np.zeros(3), 'covar': np.diag(np.ones(3)) * 1.e-3**2 }, 'vertexSampler' : { 'mean' : np.zeros(3), 'covar': np.diag(np.ones(3)) * 1.e-3**2 } }, 'PID' : { 'eff' : 0.95, 'sigmaKpi' : 6., 'sigmaMupi' : 4., 'sigmaKp' : 3., 'sigmaE' : 3., }, 'Calorimeter' : { 'deteff': 1.0, 'energyThreshold' : 15e-3, 'maxCosth' : np.cos(10./180. * np.pi), 'sampler' : { 'mean' : np.zeros(3), 'covar': np.diag(np.ones(3)) * 1.e-2**2 } } }) am.add_parsim(which='simple', cfg=parsimCfg)
See the detailed description of the simple SCT parametric simulation.
add_fullsim()
fullsimCfg = AuroraConfig({ 'detector': 'SimG4DD4hepDetector', 'subsystems': ['ALL'], 'physicslist': 'SimG4FtfpBert', 'energyCut': 0.1 * units.GeV, 'field' : { 'Bz' : 1.0 * units.tesla, 'rmax' : 100.0 * units.m, 'zmax' : 100.0 * units.m }, 'olevel': 'info', })
add_signal_provider()
eventgenCfg = AuroraConfig({ 'root' : 'vpho', 'dec' : , 'ecms' : 0., 'olevel': 'info', }) am.add_signal_provider('evtgen', evtgenCfg)
or
particlegunCfg = AuroraConfig({ 'momentum' : np.array([0.1, 1.5]) * units.GeV, 'phi': [0., 2*np.pi], 'theta': np.array([10, 170]) * units.rad, 'particles': [11, 13, 211], 'olevel': 'info', }) am.add_signal_provider('gun', gunCfg)