AuroraMaster

From Charm-Tau Detector
(Difference between revisions)
Jump to: navigation, search
(Replaced content with " The AuroraMaster analysis configuration system used in Aurora version 2.x has been removed in the development version (branch [https://git.inp.nsk.su/sctau/aurora/-/tree/...")
 
(3 intermediate revisions by one user not shown)
Line 1: Line 1:
= Introduction =
 
  
The AuroraMaster package contains python classes providing high level interfaces to the Aurora algorithms and tools. The following tools are implemented in AuroraMaster at the moment:
+
The AuroraMaster analysis configuration system used in Aurora version 2.x has been removed in the development version (branch [https://git.inp.nsk.su/sctau/aurora/-/tree/dev-gcf1?ref_type=heads dev-gcf1]).
 
+
The analysis is now configured by creation of various analysis tools using usual Python functions and joining them into analysis-tool chain of AnalysisAlgorithm.
* Read/write SCT EDM data
+
Please see the page [[Use_Analysis_package]] for details.
* Primary event generators
+
** Particle gun
+
** [https://evtgen.hepforge.org/ EvtGen]
+
* Parametric simulation
+
** Main SCT parametric simulation
+
** Simple parametric simulation
+
* Full simulation with DD4Hep and Geant4
+
* Event analysis and selection with the Analysis package
+
** Access to reconstructed final-state-particles
+
** Reconstruction of particle decay trees
+
** Saving flat n-tuples for further physics analysis
+
 
+
= The AuroraMaster class =
+
 
+
Each job option employing AuroraMaster must contain one instance of the AuroraMaster class:
+
 
+
from AuroraMaster.auroramaster import AuroraMaster
+
am = AuroraMaster(olvl='info')
+
 
+
The <code>olvl</code> argument specifies the default output level: 'debug' or 'info', where the latter is used as the default.
+
 
+
The job option logic is formed by invoking methods of the AuroraMaster instance. Each method has the 'cfg' parameter that takes an AuroraConfig object.
+
 
+
The following example shows a ready-to-use job option for event generation with [https://evtgen.hepforge.org/ EvtGen] and saving them to file in SCT EDM format:
+
 
+
from AuroraMaster.auroramaster import AuroraMaster, AuroraConfig
+
# Instantiate AuroraMaster
+
am = AuroraMaster('evtgen', 'info')
+
# Plug in component for EvtGen
+
evtgenCfg = AuroraConfig({
+
    'root' : 'psi(3770)',
+
    'dec': './dkpi.dec'
+
})
+
am.add_signal_provider('evtgen', evtgenCfg)
+
# Plug in component for SCT EDM output
+
edmoutputCfg = AuroraConfig{
+
    'filename': 'parsim.root',
+
    'commands': ['keep *'],
+
})
+
am.add_edmo(cfg=edmoutputCfg)
+
am.run(evtmax=10**4)
+
 
+
The <code>run</code> method must be invoked at the end.
+
 
+
= Components =
+
 
+
All AuroraMaster class methods of the <code>add_{component}</code> format has two parameters:
+
 
+
* <code>cfg</code> - an object of the <code>AuroraConfig</code> class. Default value it None
+
* <code>json</code> - string path to a json file with configuration. Default value it None
+
 
+
A component set up is dome with three steps:
+
 
+
# Default configuration
+
# Configuration with passed json file. It overwrites any subset of default parameters. Parameters not specified in json keep the default values
+
# Configuration with <code>AuroraConfig</code> object. It overrides values of the specified parameters leaving other parameters unchanged
+
 
+
If some parameter is specified in both json file and <code>AuroraConfig</code> object, the final value is taken from the <code>AuroraConfig</code> object.
+
 
+
= AuroraConfig =
+
 
+
The AuroraConfig is a data structure very similar to python dict. It can contain nested lists, dicts and other AuroraConfig objects. An example below shows configuration of simple parametric simulation:
+
 
+
parsimCfg = AuroraConfig({
+
    'Tracker' : {
+
        'deteff': 0.99,
+
        'ptcut': 50e-3,
+
        'bfield': 1.5,
+
        'maxCosth': np.cos(10./180. * np.pi),
+
        'momentumSampler' : {
+
            'mean' : np.zeros(3),
+
            'covar': np.diag(np.ones(3)) * 1.e-3**2
+
        },
+
        'vertexSampler' : {
+
            'mean' : np.zeros(3),
+
            'covar': np.diag(np.ones(3)) * 1.e-3**2
+
        }
+
    },
+
    'PID' : {
+
        'eff' : 0.95,
+
        'sigmaKpi' : 6.,
+
        'sigmaMupi' : 4.,
+
        'sigmaKp' : 3.,
+
        'sigmaE' : 3.,
+
    },
+
    'Calorimeter' : {
+
        'deteff': 1.0,
+
        'energyThreshold' : 15e-3,
+
        'maxCosth' : np.cos(10./180. * np.pi),
+
        'sampler' : {
+
            'mean' : np.zeros(3),
+
            'covar': (np.diag(np.ones(3)) * 1.e-2**2).ravel()
+
        }
+
    }
+
})
+
 
+
An AuroraConfig object can be serialized to and serialized from json with methods <code>to_json</code> and <code>from_json</code>. It is recommended to create json files with configuration using this interface, and not create json manualy.
+
 
+
 
+
 
+
[[Category:Not_public]]
+

Latest revision as of 16:52, 30 May 2025

The AuroraMaster analysis configuration system used in Aurora version 2.x has been removed in the development version (branch dev-gcf1). The analysis is now configured by creation of various analysis tools using usual Python functions and joining them into analysis-tool chain of AnalysisAlgorithm. Please see the page Use_Analysis_package for details.

Personal tools