Simple SCT parametric simulation
From Charm-Tau Detector
(Difference between revisions)
V.S.Vorobev (Talk | contribs) |
V.S.Vorobev (Talk | contribs) |
||
| Line 68: | Line 68: | ||
}) | }) | ||
am.add_parsim(which='simple', cfg=parsimCfg) | am.add_parsim(which='simple', cfg=parsimCfg) | ||
| − | |||
| − | |||
Latest revision as of 18:25, 4 August 2021
Contents |
[edit] SimpleSctParSimAlg
The SimpleSctParSimAlg algorithm (gitlab) implements parametric simulation routine. Tools implementing ICalorimeterTool, ITrackerTool, and IPIDTool are required for actual simulation. A user can implement these tools with necessary logic. The following example tool implementations exist:
[edit] SimpleCalorimeterTool
The SimpleCalorimeterTool tool implements the following logic:
- Lower photon energy threshold (
energyThresholdproperty) - Photon detection efficiency (
deteffproperty) - Polar angle cut (
maxCosthproperty) - 3D Gaussian resolution for energy, cos(theta) and phi variables (
samplerproperty)
[edit] SimpleTrackerTool
The SimpleTrackerTool tool implements the following logic:
- Minimal track transverse momentum (
ptcutparameter) - Track reconstruction efficiency (
deteffparameter) - Magnetic field (
bfieldparameter) - Polar angle cut (
maxCosthproperty) - 3D Gaussian resolution for track vertex (
vertexSamplerproperty) - 3D Gaussian resolution for track momentum (
momentumSamplerproperty)
[edit] SimplePIDTool
The SimplePIDTool tool implements the following logic:
- Probability of having PID decision (
effparameter) - mu/pi separation quality (
sigmaMupiparameter) - K/pi separation quality (
sigmaKpiparameter) - K/p separation quality (
sigmaKpparameter) - electron id quality (
sigmaEparameter)
[edit] Config example
parsimCfg = AuroraConfig({
'Tracker' : {
'deteff': 0.99,
'ptcut': 50e-3,
'bfield': 1.5,
'maxCosth': np.cos(10./180. * np.pi),
'momentumSampler' : {
'mean' : np.zeros(3),
'covar': np.diag(np.ones(3)) * 1.e-3**2
},
'vertexSampler' : {
'mean' : np.zeros(3),
'covar': np.diag(np.ones(3)) * 1.e-3**2
}
},
'PID' : {
'eff' : 1.00,
'sigmaKpi' : 6.,
'sigmaMupi' : 4.,
'sigmaKp' : 3.,
'sigmaE' : 3.,
},
'Calorimeter' : {
'deteff': 1.0,
'energyThreshold' : 15e-3,
'maxCosth' : np.cos(10./180. * np.pi),
'sampler' : {
'mean' : np.zeros(3),
'covar': (np.diag(np.ones(3)) * 1.e-2**2).ravel()
}
}
})
am.add_parsim(which='simple', cfg=parsimCfg)