Use Analysis package
V.S.Vorobev (Talk | contribs) |
V.S.Vorobev (Talk | contribs) |
||
(7 intermediate revisions by one user not shown) | |||
Line 1: | Line 1: | ||
= Introduction = | = Introduction = | ||
− | The Analysis module implements | + | The <code>Analysis</code> module implements tools for: |
− | * Access | + | * Access reconstructed final-state-particles |
− | * | + | * Building particle decay trees |
* Imposing selection criteria | * Imposing selection criteria | ||
− | * Applying kinematic fit to | + | * Applying kinematic fit to a decay tree |
− | * Saving | + | * Saving flat ntuple to a <code>ROOT</code> <code>TTree</code> |
− | == | + | == Decay description == |
− | The Analysis | + | The <code>Analysis</code> module supports string description of particle decays. [https://git.inp.nsk.su/sctau/aurora/-/blob/master/Generation/Generators/EvtGen_i/share/evt.pdl The EvtGen particle naming scheme] is used. The following strings are valid decay expressions: |
"D0" | "D0" | ||
Line 17: | Line 17: | ||
"D0 -> [rho0 -> pi+ pi-] pi0" | "D0 -> [rho0 -> pi+ pi-] pi0" | ||
− | A decay string may or may not contain the arrow and right-hand side. Spaces around the arrow are optional. Nested decays are expressed with square brackets. | + | A decay string may or may not contain the arrow and the right-hand side. Spaces around the arrow are optional. Nested decays are expressed with square brackets. |
A particle in the decay string can be '''labeled''': | A particle in the decay string can be '''labeled''': | ||
Line 23: | Line 23: | ||
"pi+:lowpt" | "pi+:lowpt" | ||
− | "lowpt" is a label. Labels allow working with | + | "lowpt" is a label. Labels allow working with several lists of the same particle type. For example: |
"D*+ -> [D0 -> K- pi+] pi+:lowpt" | "D*+ -> [D0 -> K- pi+] pi+:lowpt" | ||
Line 31: | Line 31: | ||
"D0 -> ^K- ^pi+" | "D0 -> ^K- ^pi+" | ||
− | "K-" and "pi+" are selected here | + | "K-" and "pi+" are selected here. |
− | == | + | == Cuts description == |
− | + | Set of [[Analysis variables|predefined variables]] is included in the <code>Analysis</code> module. There are several types of variables: | |
− | + | * ''Particle variables''. A variable is calculated for a given particle, e.g.: <code>M</code> (mass). | |
− | + | * ''Parametric particle variables''. A variable is calculate for a given particle and depends on one or several parameters, e.g. <code>deltaM</code> depends on the beam energy. | |
− | + | * ''Event variables''. A variable is calculated for an event, e.g. <code>ncharged</code> (number of tracks). | |
− | + | ||
− | + | Selection criteria are imposed with string expressions like: | |
+ | |||
+ | * "M < 0.12" # the mass less than 0.12 GeV | ||
+ | * "charge == 0" # zero electric charge | ||
+ | * "1.8 < M < 1.9" # the mass is between 1.8 GeV and 1.9 GeV | ||
+ | * "charge == 0 and M < 0.12" | ||
+ | * "charge == 0 and [M < 0.12 or pt > 0.1]" | ||
Square brackets are used to manage the order of logical operations. The following operators are available: ">", ">=", "<", "<=", "==", "!=", "and", "or". | Square brackets are used to manage the order of logical operations. The following operators are available: ">", ">=", "<", "<=", "==", "!=", "and", "or". | ||
Line 47: | Line 53: | ||
= AuroraMaster interface = | = AuroraMaster interface = | ||
− | + | An analysis algorithm is being connected to an <code>AuroraMaster</code> instance with the <code>add_analysis</code> method. An <code>AuroraConfig</code> object with analysis configuration must be passed as the <code>cfg</code> parameter: | |
+ | |||
+ | am = AuroraMaster('analysis', 'info') | ||
+ | am.add_analysis(cfg=anaysisCfg) | ||
+ | |||
+ | An analysis configuration should contain three items | ||
+ | |||
+ | anaysisCfg = AuroraConfig({ | ||
+ | 'Particles' : [...], | ||
+ | 'Modifiers' : [...], | ||
+ | 'Tuples' : [...] | ||
+ | }) | ||
+ | |||
+ | == EventLoader == | ||
+ | |||
+ | The EventLoader algorithm specifies lists of the final-state-particles and corresponding cuts. Its configuration is a list of dictionaries of the following format: | ||
+ | |||
+ | [ | ||
+ | { | ||
+ | 'decstr': 'pi+ cc', | ||
+ | 'cutstr': 'pt > 0.10', | ||
+ | }, | ||
+ | { | ||
+ | 'decstr': 'K+ cc', | ||
+ | 'cutstr': 'pt > 0.10', | ||
+ | }, | ||
+ | { | ||
+ | 'decstr': 'pi+:lowpt cc', | ||
+ | 'cutstr': 'pt < 0.20', | ||
+ | }, | ||
+ | { | ||
+ | 'decstr': 'gamma', | ||
+ | 'cutstr': 'E > 0.07', | ||
+ | }, | ||
+ | ... | ||
+ | ] | ||
+ | |||
+ | The <code>decstr</code> key correspond to the decay string. "cc" at the end of the decay string means that list of anti-particles will be created, too. The configuration above leads seven lists: "pi+", "pi-", "K+", "K-", "pi+:lowpt", "pi-:lowpt", and "gamma". These lists are available for the further analysis. | ||
+ | |||
+ | == Particle combiner == | ||
+ | |||
+ | The <code>ParticleCombiner</code> algorithm is used to construct candidates for intermediate unstable particles like D0 or Lambda_c. An analysis job usually includes several ParticleCombiner algorithms. Combines are configured with the following parameters: | ||
+ | |||
+ | [ | ||
+ | { | ||
+ | 'label': 'Dkpi', | ||
+ | 'decstr': 'D0 -> pi+ K-', | ||
+ | 'cutstr': '1.82 < M < 1.90', | ||
+ | 'selfconj': False | ||
+ | }, | ||
+ | { | ||
+ | 'label': 'Dkk', | ||
+ | 'decstr': 'D0:kk -> K+ K-', | ||
+ | 'cutstr': '1.82 < M < 1.90', | ||
+ | 'selfconj': True | ||
+ | }, | ||
+ | { | ||
+ | 'label': 'DstDkpi', | ||
+ | 'decstr': 'D*+ -> D0 pi+:lowpt', | ||
+ | 'cutstr': 'deltaM < 0.10', | ||
+ | 'selfconj': False | ||
+ | }, | ||
+ | ] | ||
+ | |||
+ | The left side of the decay string defines the list of particles to create, and the right side must refer to existing particle lists (created by EventLoader or other ParticleCombiner). If selfconj us false then the charge conjugated list will be created, too ('anti-D0 -> pi- K+' and `D*- -> anti-D0 pi-:lowpt` will be created for the configuration above). | ||
+ | |||
+ | == Ntuple configuration == | ||
+ | |||
+ | The last step of the analysis is saving necessary variables in a flat ntuple. Each ntuple algorithm corresponds to a particle list. There can be several ntuple algorithms corresponding to different particle lists. An example configuration is | ||
+ | |||
+ | [ | ||
+ | { | ||
+ | 'label': 'd0tup', | ||
+ | 'root': 'D0', | ||
+ | 'ofile': 'tup.root', | ||
+ | 'vars' : [ | ||
+ | { | ||
+ | 'selector': 'root', | ||
+ | 'varlist': ['momentumVars', 'E', 'M'], | ||
+ | }, | ||
+ | { | ||
+ | 'selector': 'D0 -> ^pi+ ^K-', | ||
+ | 'varlist': ['momentumVars', 'pidVars', 'matchVars', 'charge'] | ||
+ | } | ||
+ | ] | ||
+ | }, | ||
+ | { | ||
+ | 'label': 'dsttup', | ||
+ | 'root': 'D*+', | ||
+ | 'ofile': 'tup.root', | ||
+ | 'vars' : [ | ||
+ | { | ||
+ | 'selector': 'root', | ||
+ | 'varlist': ['M', 'deltaM'], | ||
+ | }, | ||
+ | { | ||
+ | 'selector': 'D*+ -> D0 ^pi+:lowpt', | ||
+ | 'varlist': ['momentumVars', 'pidVars', 'charge'] | ||
+ | } | ||
+ | ] | ||
+ | }, | ||
+ | ] | ||
+ | |||
+ | The "label" value defines the name of TTree in the output file. The "root" value must correspond to an existing particle list. The "selector" value is a decay string specifying particles for which variables will be calculated and saved. The "varlist" is a list of named variables. Note that "momentumVars" and "pidVars" names denote groups of variables. Here is the complete list of names variable groups (defined in [https://git.inp.nsk.su/sctau/aurora/-/blob/master/Controls/AuroraMaster/python/analysis.py analysis.py]): | ||
+ | |||
+ | VARSETS = { | ||
+ | 'momentumVars': ['px', 'py', 'pz', 'p', 'pt'], | ||
+ | 'pidVars': ['pidkpi', 'pidmupi', 'pidkp', 'pide'], | ||
+ | 'matchVars': ['pdgid_mc', 'px_mc', 'py_mc', 'pz_mc'], | ||
+ | } | ||
+ | |||
+ | |||
+ | == Convenience methods == | ||
+ | |||
+ | A set of convenience methods are defined in the python Analysis module. These methods ease configuration of the analysis. The example below shows how to define the same configuration as we considered above: | ||
from AuroraMaster.auroramaster import AuroraMaster, AuroraConfig | from AuroraMaster.auroramaster import AuroraMaster, AuroraConfig | ||
Line 61: | Line 181: | ||
A.fspList('pi+ cc'), | A.fspList('pi+ cc'), | ||
A.fspList('K+ cc'), | A.fspList('K+ cc'), | ||
+ | A.fspList('pi+:lowpt cc', 'pt < 0.20'), | ||
+ | A.fspList('gamma'), | ||
], | ], | ||
combiners=[ | combiners=[ | ||
A.combiner('Dkpi', 'D0 -> pi+ K-', '1.8 < M < 1.9'), | A.combiner('Dkpi', 'D0 -> pi+ K-', '1.8 < M < 1.9'), | ||
+ | A.combiner('Dkk', 'D0 -> K+ K-', '1.8 < M < 1.9', selfconj=True), | ||
+ | A.combiner('DstDkpi', 'D*+ -> D0 pi+:lowpt', 'deltaM < 0.10'), | ||
], | ], | ||
tuples=[ | tuples=[ | ||
Line 69: | Line 193: | ||
A.vars('root', ['momentumVars', 'E', 'M']), | A.vars('root', ['momentumVars', 'E', 'M']), | ||
A.vars('D0 -> ^pi+ ^K-', ['momentumVars', 'pidVars', 'matchVars']), | A.vars('D0 -> ^pi+ ^K-', ['momentumVars', 'pidVars', 'matchVars']), | ||
− | ]), | + | ] |
+ | ), | ||
+ | A.ntuple('tup', 'D0', 'tuple.root', [ | ||
+ | A.vars('root', ['M', 'deltaM']), | ||
+ | A.vars('D*+ -> D0 ^pi+:lowpt', ['momentumVars', 'pidVars', 'charge']), | ||
+ | ] | ||
+ | ), | ||
] | ] | ||
) | ) | ||
am.add_analysis(cfg=anaysisCfg) | am.add_analysis(cfg=anaysisCfg) | ||
am.run(evtmax=10**4) | am.run(evtmax=10**4) | ||
− | |||
− | |||
− | |||
− |
Latest revision as of 18:25, 4 August 2021
Contents |
[edit] Introduction
The Analysis
module implements tools for:
- Access reconstructed final-state-particles
- Building particle decay trees
- Imposing selection criteria
- Applying kinematic fit to a decay tree
- Saving flat ntuple to a
ROOT
TTree
[edit] Decay description
The Analysis
module supports string description of particle decays. The EvtGen particle naming scheme is used. The following strings are valid decay expressions:
"D0" "D0 -> K- pi+" "D0 -> [rho0 -> pi+ pi-] pi0"
A decay string may or may not contain the arrow and the right-hand side. Spaces around the arrow are optional. Nested decays are expressed with square brackets.
A particle in the decay string can be labeled:
"pi+:lowpt"
"lowpt" is a label. Labels allow working with several lists of the same particle type. For example:
"D*+ -> [D0 -> K- pi+] pi+:lowpt"
A particle in the decay string can be selected using the "^" symbol:
"D0 -> ^K- ^pi+"
"K-" and "pi+" are selected here.
[edit] Cuts description
Set of predefined variables is included in the Analysis
module. There are several types of variables:
- Particle variables. A variable is calculated for a given particle, e.g.:
M
(mass). - Parametric particle variables. A variable is calculate for a given particle and depends on one or several parameters, e.g.
deltaM
depends on the beam energy. - Event variables. A variable is calculated for an event, e.g.
ncharged
(number of tracks).
Selection criteria are imposed with string expressions like:
- "M < 0.12" # the mass less than 0.12 GeV
- "charge == 0" # zero electric charge
- "1.8 < M < 1.9" # the mass is between 1.8 GeV and 1.9 GeV
- "charge == 0 and M < 0.12"
- "charge == 0 and [M < 0.12 or pt > 0.1]"
Square brackets are used to manage the order of logical operations. The following operators are available: ">", ">=", "<", "<=", "==", "!=", "and", "or".
[edit] AuroraMaster interface
An analysis algorithm is being connected to an AuroraMaster
instance with the add_analysis
method. An AuroraConfig
object with analysis configuration must be passed as the cfg
parameter:
am = AuroraMaster('analysis', 'info') am.add_analysis(cfg=anaysisCfg)
An analysis configuration should contain three items
anaysisCfg = AuroraConfig({ 'Particles' : [...], 'Modifiers' : [...], 'Tuples' : [...] })
[edit] EventLoader
The EventLoader algorithm specifies lists of the final-state-particles and corresponding cuts. Its configuration is a list of dictionaries of the following format:
[ { 'decstr': 'pi+ cc', 'cutstr': 'pt > 0.10', }, { 'decstr': 'K+ cc', 'cutstr': 'pt > 0.10', }, { 'decstr': 'pi+:lowpt cc', 'cutstr': 'pt < 0.20', }, { 'decstr': 'gamma', 'cutstr': 'E > 0.07', }, ... ]
The decstr
key correspond to the decay string. "cc" at the end of the decay string means that list of anti-particles will be created, too. The configuration above leads seven lists: "pi+", "pi-", "K+", "K-", "pi+:lowpt", "pi-:lowpt", and "gamma". These lists are available for the further analysis.
[edit] Particle combiner
The ParticleCombiner
algorithm is used to construct candidates for intermediate unstable particles like D0 or Lambda_c. An analysis job usually includes several ParticleCombiner algorithms. Combines are configured with the following parameters:
[ { 'label': 'Dkpi', 'decstr': 'D0 -> pi+ K-', 'cutstr': '1.82 < M < 1.90', 'selfconj': False }, { 'label': 'Dkk', 'decstr': 'D0:kk -> K+ K-', 'cutstr': '1.82 < M < 1.90', 'selfconj': True }, { 'label': 'DstDkpi', 'decstr': 'D*+ -> D0 pi+:lowpt', 'cutstr': 'deltaM < 0.10', 'selfconj': False }, ]
The left side of the decay string defines the list of particles to create, and the right side must refer to existing particle lists (created by EventLoader or other ParticleCombiner). If selfconj us false then the charge conjugated list will be created, too ('anti-D0 -> pi- K+' and `D*- -> anti-D0 pi-:lowpt` will be created for the configuration above).
[edit] Ntuple configuration
The last step of the analysis is saving necessary variables in a flat ntuple. Each ntuple algorithm corresponds to a particle list. There can be several ntuple algorithms corresponding to different particle lists. An example configuration is
[ { 'label': 'd0tup', 'root': 'D0', 'ofile': 'tup.root', 'vars' : [ { 'selector': 'root', 'varlist': ['momentumVars', 'E', 'M'], }, { 'selector': 'D0 -> ^pi+ ^K-', 'varlist': ['momentumVars', 'pidVars', 'matchVars', 'charge'] } ] }, { 'label': 'dsttup', 'root': 'D*+', 'ofile': 'tup.root', 'vars' : [ { 'selector': 'root', 'varlist': ['M', 'deltaM'], }, { 'selector': 'D*+ -> D0 ^pi+:lowpt', 'varlist': ['momentumVars', 'pidVars', 'charge'] } ] }, ]
The "label" value defines the name of TTree in the output file. The "root" value must correspond to an existing particle list. The "selector" value is a decay string specifying particles for which variables will be calculated and saved. The "varlist" is a list of named variables. Note that "momentumVars" and "pidVars" names denote groups of variables. Here is the complete list of names variable groups (defined in analysis.py):
VARSETS = { 'momentumVars': ['px', 'py', 'pz', 'p', 'pt'], 'pidVars': ['pidkpi', 'pidmupi', 'pidkp', 'pide'], 'matchVars': ['pdgid_mc', 'px_mc', 'py_mc', 'pz_mc'], }
[edit] Convenience methods
A set of convenience methods are defined in the python Analysis module. These methods ease configuration of the analysis. The example below shows how to define the same configuration as we considered above:
from AuroraMaster.auroramaster import AuroraMaster, AuroraConfig from AuroraMaster.auroramaster import Analysis as A am = AuroraMaster('analysis', 'info') edminputCfg = AuroraConfig({ 'filename': './parsim.root', # should be in your run directory 'collections': ['Particles', 'allGenParticles'], }) am.add_edmi(cfg=edminputCfg) anaysisCfg = A.analysis( fsps=[ A.fspList('pi+ cc'), A.fspList('K+ cc'), A.fspList('pi+:lowpt cc', 'pt < 0.20'), A.fspList('gamma'), ], combiners=[ A.combiner('Dkpi', 'D0 -> pi+ K-', '1.8 < M < 1.9'), A.combiner('Dkk', 'D0 -> K+ K-', '1.8 < M < 1.9', selfconj=True), A.combiner('DstDkpi', 'D*+ -> D0 pi+:lowpt', 'deltaM < 0.10'), ], tuples=[ A.ntuple('tup', 'D0', 'tuple.root', [ A.vars('root', ['momentumVars', 'E', 'M']), A.vars('D0 -> ^pi+ ^K-', ['momentumVars', 'pidVars', 'matchVars']), ] ), A.ntuple('tup', 'D0', 'tuple.root', [ A.vars('root', ['M', 'deltaM']), A.vars('D*+ -> D0 ^pi+:lowpt', ['momentumVars', 'pidVars', 'charge']), ] ), ] ) am.add_analysis(cfg=anaysisCfg) am.run(evtmax=10**4)