PAPAS FOR SCTAU

G. P. Razuvaev

29th June, 2018

Data formation

Generator data

Papas

Tracker, calorimeter, solenoid
Detector response
Reconstructed
particles

PID systems

Background and fake particles

particles

User tree maker

Detector subsystems

Tracker

Papas has only one build-in tracker. The complex response represented DC + IT should be implemented:

```
if pt < 0.1:
    return False
elif pt < 0.3:
    return rnd < 0.9
elif pt < 1.:
    return rnd < 0.95
else:
    return rnd < 0.99</pre>
```

The BaBar DC resolution model has been used.

$$\frac{\sigma}{p_T} = 0.13\% \times p_T + 0.45\%$$

Detector subsystems

Calorimeter

A hadron calorimeter is suppressed.

The electromagnetic calorimeter parameters are taken from D. A. Epifanov's CHARM-18 satellite presentation (pure CsI).

$$\frac{\sigma_E}{E} = \frac{0.82 \%}{\sqrt[4]{E}} \oplus \frac{0.066 \%}{E} \oplus 1.34 \%$$

Different calorimeter options are possible, but paramitrization is required.

Detector subsystems

PID systems aren't presented in papas. Add their response externally knowing generated particle parameters.

Time of flight

FARICH

 K_L - μ system

dE/dx

???

Parameterised response is needed.

The ToF system is under development: just pure geometry calculation; maybe switch to step by step simulation.

Output data

Now the output tree contains:

Generator particles

Generator vertices

Reconstructed particles

Output tree

of rec. particles
rec. parameters
of gen. particles
gen. parameters
of gen. vertices
gen. vert. parameters
recgen. ptcl. connection
gen. ptclver. connection

recgen is done by hand: for j-th rec. ptcl. find the gen. ptcl. by $\min\left\{\sum_{i=x,\,y,\,z}(p_i^j-p0_i^k)^2\right\}$

To get the **i**-th particle generated parameters: **px0[recgen[i]]**.

To get the **i**-th particle vertex *x* coordinate: **vx0[genver[recgen[i]]]**.

Conclusion

Results

- Papas + Heppy employed.
- More or less realistic geometry build.
- An output tree is ready to be used.

Plans

- Implement a PID system (ToF as the first try).
- Develop the inner tracker effects.
- Run generated data through Papas.
- Wiki activity.

Fin

