Прецизионные измерения в распадах J/ψ и редкие распады чармониев

К.Ю. Тодышев

Декабрь 2017

Основные параметры с-au фабрики

Инклюзивное адронное сечение

Прецизионные измерения в распадах J/ψ и редкие распады чармониев

3/20

Чармоний

Прецизионное измерение вероятностей радиационных переходов

Исследование слабых распадов J/ψ

Обнаружение и исследование распадов J/ψ неизвестных на данный момент

Поиск процессов за рамками Стандартной Модели

Частица	Число мод распадов,	Сумма вероятностей
	перечисленных в PDG	известных мод распадов
ψ (3770)	9	$\sim 93\%$
η_{c}	29	$\sim 70\%$
J/ψ	~ 200	$\sim45\%$

Прецизионные измерения в распадах J/ψ и редкие распады чармониев — К.Ю. Тодышев —

Прецизионное измерение вероятностей радиационных переходов

Исследование слабых распадов J/ψ ,

полулептонные процессы

Результаты теор. расчётов взяты из arXiv:1604.03298

Прецизионные измерения в распадах J/ψ и редкие распады чармониев

Исследование слабых распадов J/ψ ,

нелептонные процессы

	u u	c		Вероя	тность
W	Z ³ d	WZ	Распад	Teop., 10 ⁻¹¹	Эксп.
c		~ .	$J/\psi ightarrow D^-\pi^-/c.c.$	$0.8 \div 12.7$	$<7.5 imes10^{-5}$
<i>c</i>	ē	ē ē	$J/\psi ightarrow D^- ho^+/c.c.$	3÷4.3	
(a) (b)	$J/\psi ightarrow D_{s}^{-}K^{+}/c.c.$	$1.6 \div 12.4$			
			$J/\psi ightarrow D_s^- K^{*+}/c.c.$	8÷56	
	u u	~~ ¹	$J/\psi ightarrow D^{*-}\pi^+/c.c.$	$6 \div 11.6$	$< 1.3 imes 10^{-4}$
ws ² a ws ²	w_S + i	$J/\psi ightarrow D^{*-} ho^+/c.c.$	28÷33		
c5	d	c	$J/\psi ightarrow D_s^{*-}K^+/c.c.$	$11 \div 17.9$	
ē(e)	ē	<i>c</i> −−− <i>c</i>	$J/\psi ightarrow D_s^{*-}K^{*+}/c.c.$	26 ± 4	
(c)		(-/	$J/\psi ightarrow \overline{D}^{0}\overline{K}^{0}/c.c.$	$3.6 \div 27.8$	$< 1.7 imes 10^{-4}$
			$J/\psi ightarrow \overline{D}^{0}\overline{K}^{*0}/c.c.$	$16 \div 152$	$< 2.5 imes 10^{-6}$
	Пример		$J/\psi ightarrow \overline{D}^{*0}\overline{K}^{0}/c.c.$	$26 \div 53.7$	
Тип	Отноше	ние	$J/\psi ightarrow \overline{D}^{*0}\overline{K}^{*0}/c.c.$	$96 \div 116$	
1	$\frac{\mathcal{B}(J/\psi \rightarrow D_{s}K)}{\mathcal{B}(J/\psi \rightarrow D_{s}K)}$	~ 0.081			
	$\frac{\mathcal{B}(J/\psi \to D_{\mathbf{s}}\pi)}{\mathcal{B}(J/\psi \to DK)}$	0.10	Результаты теор. расчёт	гов взяты из arX	(iv:1604.03298
2	$\frac{\mathcal{B}(J/\psi \to D\pi)}{\mathcal{B}(J/\psi \to D\pi)}$	\sim 0.18			

Поиск нейтральных токов с изменением аромата (FCNC процессы)

9/20

Поиск процессов с нарушение лептонного аромата (LFV процессы)

- 1 В Стандартной Модели $\mathcal{B} \sim 10^{-55} \div 10^{-54}$
- 2 За рамками Стандартной Модели ${\cal B} \sim 10^{-15} \div 10^{-12}$

Процесс	Верхний предел (@90%)	
	BESII (59 $ imes$ 10 ⁶)	$BESIII\ (225\times 10^6)$
$J/\psi ightarrow e\mu$	$1.1 imes10^{-6}$	$1.6 imes10^{-7}$
$J/\psi \to e \tau$	$8.3 imes 10^{-6}$	-
$J/\psi \to \mu \tau$	$2.0 imes10^{-6}$	-

Поиск распадов J/ψ с нарушением симметрии (*LFV*, *LNV*, *BNV* + *LNV*)

Изучение барионов

		Полулептонн	ые распады
Распады $J/\psi, \psi(2S)$	B, 10 ^{−3}	Распад	Верхний предел, 10 ^{—6}
$J/\psi \rightarrow p\overline{p}$	2.120 ± 0.029	$\Sigma^+ \rightarrow ne^+ \nu_e$	< 5
$J/\psi \rightarrow n\overline{n}$	2.090 ± 0.16	$\Xi^0 \rightarrow \Sigma^- e^+ \nu_e$	< 900
$J/\psi \to \Lambda\overline{\Lambda}$	1.61 ± 0.15	$\Xi^0 \rightarrow pe^- \overline{nu}_e$	< 1300
$\frac{1}{\Lambda(1232)^{++}} \overline{\Lambda}(1232)^{}$	1.10 ± 0.20	$\underline{=} \xrightarrow{=} \xrightarrow{=} \underline{=} \xrightarrow{=} \underbrace{=} \xrightarrow{\overline{\nu}_e}$	< 2300
$\frac{\Delta(1232)}{\Delta(1232)}$	1.10 ± 0.23	$\pm \rightarrow ne \nu_e$	< 3200
$J/\psi \rightarrow L^{+}L^{-}$	1.50 ± 0.24	FCNC # LVN	процессы
$J/\psi \rightarrow \Sigma^{0}\overline{\Sigma}^{0}$	1.29 ± 0.09	Распад	B, 10 ⁻⁶
$J/\psi \rightarrow \Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}/c.c$	1.10 ± 0.12	$\Sigma^+ \rightarrow p e^+ e^-$	< 7
$J/\psi \rightarrow \Sigma(1385)^{-}\overline{\Sigma}^{+}/c.c.$	0.31 ± 0.05	$\Sigma^+ \rightarrow p \mu^+ \mu^-$	0.09+0.09
$\frac{1}{2} = \overline{\Xi^+}$	0.86 ± 0.11	$- \underbrace{=}^{\bullet} \rightarrow \Lambda e^+ e^-$	7.6 ± 0.6
$\frac{-3}{\psi}$	0.00 ± 0.11	$\frac{\Lambda \rightarrow ne'e}{-0, -0, + -}$	-
$J/\psi \rightarrow = =$	1.20 ± 0.24	$ \underbrace{=}^{\bullet} \rightarrow \Sigma^{\bullet} e' e $	-
$J/\psi ightarrow \Xi(1530)^{o} \overline{\Xi}^{o}$	0.32 ± 0.14	$\frac{z \rightarrow \Sigma e'e}{2}$	-
$J/\psi \rightarrow \Xi(1530)^-\overline{\Xi}^+$	0.59 ± 0.15	$\frac{1}{2} \rightarrow 2 e e (\mu \mu)$	-
$\psi(2S) \rightarrow \Lambda^- \overline{\Lambda}^+$	0.357 ± 0.018	$\frac{\lambda \rightarrow \mathbf{n}\nu\nu}{\Sigma^+ \rightarrow \mathbf{n}\nu\overline{\nu}}$	-
$\psi(2S) \rightarrow \Omega^- \overline{\Omega}^+$	0.05 ± 0.01	$\Xi^{0} \rightarrow \Lambda \nu \overline{\nu}$	-
$\frac{1}{ab(2S)} \rightarrow \Delta^{++}\overline{\Delta}^{}$	0.128 ± 0.035	$\Xi^{0} \rightarrow \Sigma^{0} \nu \overline{\nu}$	-
$\psi(25) \rightarrow \Delta \Delta$	0.120 ± 0.033	$\Xi^- \rightarrow \Sigma^- \nu \overline{\nu}$	-
		$\Omega^- \rightarrow \Xi^- \nu \overline{\nu}$	-
		$\Sigma^- \rightarrow \Sigma^+ e^- e^-$	-
		$\Sigma^- \rightarrow p e^- e^-$	-
Виу+циу процессы		$\Xi^- ightarrow pe^-e^-$	-
Распад		$\Xi^- \rightarrow \Sigma^+ e^- e^-$	-
$\Lambda, \Sigma^{o}, \Xi^{o} \rightarrow pl^{-}$		$\Omega^- \rightarrow \Sigma^+ e^- e^-$	-
$\Sigma^{\pm} ightarrow nl^{\pm}$		$\Sigma^- \rightarrow p \mu^- \mu^-$	-
		$\Xi^- \rightarrow p \mu^- \mu^-$	<0.04

Поиск тёмного фотона методом ISR

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \frac{\varepsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu} + \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} + m_{A'}^2 A'^{\mu} A'_{\mu}$$

Рассматриваются процессы: $e^+e^-
ightarrow A' \gamma_{ISR}
ightarrow I^+I^- \gamma_{ISR}$

агХіу:1705.04265 Исследование процессов: $e^+e^+ o e^+e^-\gamma_{ISR}, \mu^+\mu^-\gamma_{ISR}$

Поиск тёмного фотона в эксклюзивных каналах

Исследование процессов $J/\psi \to XU$, $U \to e^+e^-$ (или $U \to \mu^+\mu^-$) BESIII (Доклад Dayong Wang PANIC2017): $J/\psi \to \eta' U$ Реконструировались события: $\gamma e^+e^-\pi^+\pi^-/\gamma\gamma e^+e^-\pi^+\pi^-$

Поиск лёгкого СР-нечётного Хиггса

FIG. 5. (color online) The 90% C.L. upper limits (UL) on the product branching fractions $\mathcal{B}(J/\psi \to \gamma A^0) \times \mathcal{B}(A^0 \to \mu^+\mu^-)$ as a function of m_{A^0} including all the uncertainties (solid line), together with expected limits computed using a large number of pseudo-experiments. The inner and outer bands include statistical uncertainties only and contain 68% and 95% of the expected limit values. The average dashed line in the center of the inner band is the expected average upper limit of 1600 pseudo-experiments. A better sensitivity in the mass region of $0.212 \leq m_A \circ \leq 0.22 \, {\rm GeV}/c^2$ is achieved due to almost negligible backgrounds as seen in Fig. [2] (top).

arXiv:1510.01641

Поиск определения вероятностей распадов в недетектируемые частицы.

Поиск событий $q\overline{q} \to (\gamma)\chi\chi$, где χ -слабовзаимодействующая частица.

Например в работе BESIII arXiv:1209.2469 исследовались процессы $J/\psi\to\phi\eta,~J/\psi\to\phi\eta'.$

FIG. 1: (a) The m _{KK} distribution for candidate events in data. The arrows on the plot indicate the signal region of ϕ
candidates. Points with error bars are data; the (blue) histogram is expected background. (b) Recoil mass distribution against
ϕ candidates, M_{ϕ}^{recoil} , for events with 1.01 GeV/ $c^2 < m_{KK} < 1.03$ GeV/ c^2 in (a). Points with error bars are data; the (blue)
solid histogram is the sum of the expected backgrounds; the dashed histograms (with arbitrary scale) are signals of η and η'
invisible decays from MC simulations; the arrows on the plot indicate the signal regions of the η and $\eta' \rightarrow$ invisible.

Процесс	Верхний предел
	BESIII (225×10^6)
$\frac{\mathcal{B}(\eta \rightarrow invisible)}{\eta \rightarrow \gamma \gamma}$	$2.6 imes10^{-4}$
$\frac{\mathcal{B}(\eta' \to \text{invisible})}{\eta' \to \gamma\gamma}$	$2.4 imes10^{-2}$

Прецизионное измерение полной ширины $\psi(2S)$

- 1 Измерения энергии пучка с точностью не хуже 50 кэВ позволит провести прецизионное измерение по полной ширины $\psi(2S)$, непосредственно из подгонки резонанса.
- 2 7-точечное сканирование, суммарный интеграл светимости 1 фб $^{-1},$ стат. ошибка $\frac{\delta\Gamma}{\Gamma}\lesssim 1\%$
- **3** При относительных $\frac{\delta \varepsilon}{\varepsilon}$, $\frac{\delta L}{L} \sim 0.1\%$, $\frac{\delta \Gamma}{\Gamma} \lesssim 1\%$, вклад ошибку точности определения энергии $\lesssim 1\%$.

Оценки выполнены А.Г. Шамовым

Аналитическое выражение для сечения вблизи резонанса в мягкофотонном приближение было впервые получено в работе: **Я.И. Азимов** *и др.* **Письма в ЖЭТФ 21 (1975) 172**

В уточнённом виде имеет вид:

$$\sigma^{e^+e^- \to \mathsf{hadr}}(s) = \sigma^{e^+e^- \to \mathsf{hadr}}_{\mathsf{continuum}} + \frac{12\pi}{s} (1 + \delta_{sf}) \left[\frac{\Gamma_{\mathrm{ee}}\tilde{\Gamma}_h}{\Gamma M} \operatorname{Im} f(s) - \frac{2\alpha \sqrt{R \,\Gamma_{\mathrm{ee}}\tilde{\Gamma}_h}}{3\sqrt{s}} \,\lambda \,\operatorname{Re} \frac{f^*(s)}{1 - \Pi_0} \right]$$

$$\delta_{sf} = \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2}\right) + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{L}{72}\right), \quad L = \ln\left(s/m_e^2\right),$$
$$\beta = \frac{2\alpha}{\pi} \left(L - 1\right), \qquad f(s) = \frac{\pi\beta}{\sin\pi\beta} \left(\frac{s}{M^2 - s - iM\Gamma}\right)^{1-\beta}$$

 $\delta_{\it sf}\,$ – вычислена в работе: Э.А.Кураев, В.С.Фадин Sov.J.Nucl.Phys.41(466-472) 1985

 Γ_{ee} , Γ , M – "одетые" параметры, с учётом радиационных поправок, $\Gamma_{ee} = \Gamma_{ee}^{(0)} / |1 - \Pi_0|^2$, λ - характерный параметр интерференции, $\tilde{\Gamma}_h \neq \Gamma_h$

Эффекты интерференциии

Если сильные и электромагнитные распады резонанса не интерферируют $\lambda = \sqrt{R\mathcal{B}_{ee}/\mathcal{B}_h}$ в противном случае для произвольной эксклюзивной моды *m* соответствующий вклад R_m в R:

$$\Gamma_m = R_m \Gamma_{ee} + \Gamma_m^{(s)} + 2\sqrt{R_m \Gamma_{ee} \Gamma_m^{(s)}} \left\langle \cos \phi_m \right\rangle_{\Theta},$$

Здесь скобки $\langle\rangle_\Theta$ отмечают усреднение по фазовому пространству

$$\lambda = \sqrt{\frac{R\mathcal{B}_{ee}}{\mathcal{B}_{h}}} + \sqrt{\frac{1}{\mathcal{B}_{h}}} \sum_{m} \sqrt{b_{m} \mathcal{B}_{m}^{(s)}} \left\langle \cos \phi_{m} \right\rangle_{\Theta}$$

где $b_m = R_m/R$ вероятность распада в континууме, $\mathcal{B}_m^{(s)} = \Gamma_m^{(s)}/\Gamma$.

$$\tilde{\Gamma}_{h} = \Gamma_{h} \times \left(1 + \frac{2\alpha}{3(1 - \operatorname{Re} \Pi_{0})\mathcal{B}_{h}} \sqrt{\frac{R}{\mathcal{B}_{ee}}} \sum_{m} \sqrt{b_{m} \mathcal{B}_{m}^{(s)}} \langle \sin \phi_{m} \rangle_{\Theta} \right)$$

- Фазы интерференции для отдельных мод распадов узких резонансов в настоящее время слабо изучены.
- 2 3-5 дневные сканирования J/ψ , $\psi(2S)$ позволят прояснить данный вопрос для основных мод.

- Возможности с-т фабрики позволят проводить широкий круг исследований состояний чармония.
- Наличие системы измерения энергии пучка дополнит физическую программу рядом уникальных экспериментов.

СПАСИБО ЗА ВНИМАНИЕ.

Прецизионные измерения в распадах J/ψ и редкие распады чармониев К.Ю. Тодышев 21.