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Abstract. The project of Super Charm-Tau (SCT) factory — a high-luminosity
electron-positron collider for studying charmed hadrons and tau lepton — is
proposed by Budker INP. The project implies single collision point equipped
with a universal particle detector. The Aurora software framework has been
developed for the SCT detector. It is based on trusted and widely used in high
energy physics software packages, such as Gaudi, Geant4, and ROOT. At the
same time, new ideas and developments are employed, in particular the Aurora
project benefits a lot from the turnkey software for future colliders (Key4HEP)
initiative. This paper describes the first release of the Aurora framework, sum-
marizes its core technologies, structure and roadmap for the near future.

1 Introduction

Proposed by Budker INP team Super Charm-Tau (SCT) factory[1] is a symmetric electron-
positron collider with a single collision point going to operate in the energy range be-
tween

√
s = 2 and 6 GeV. This energy range covers the charmonium family (including

the JPC = 1−− states J/ψ, ψ(2S ), ψ(3770) and others that can be produced directly), several
open charm hadrons thresholds (D(∗)0D(∗)0, D(∗)+D(∗)−, ΛcΛc etc.), and the τ lepton threshold,
thus providing the rich physics program. Projected luminosity of the collider is 1035 cm−2s−1.
Maximal event rate to deliver to the data storage is expected to be more than 350 kHz for op-
eration at the J/ψ resonance.

The collision point is equipped with a universal particle detector covering nearly full solid
angle (Figure 1). The detector contains all traditional subsystems:

• tracking system composed of the drift chamber and inner tracker. Two main alternative
options for the inner tracker are under discussion at the moment: time projection chamber
(TPC) and cylindrical gas electron multiplier (cGEM), the backup option being silicon
strips,

• charged particles identification system, where Cherenkov-based and time-of-flight solu-
tions are under consideration,

• calorimeter. Pure CsI crystal calorimeter is the baseline option,
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• muon system. A scintillator counter system similar to the Belle II KLM is considered as a
suitable technology,

• superconducting coil providing uniform magnetic field of about 1.5 T in the tracker.

Figure 1. The SCT detector engineering sketch. 1 — Beam pipe and final focus magnets, 2 — Inner
tracker, 3 — Drift chamber, 4 — PID system, 5 — Calorimeter, 6 — Magnet coil, 7 — Muon system
and yoke.

From the software point of view, the SCT experiment is a typical heavy flavor factory
experiment. It requires a complete stack of relevant software, including

• event generators,

• parametric and full detector simulation,

• event reconstruction algorithms,

• online event interpretation for trigger decisions,

• event data model (EDM),

• I/O interface to conditions data base,

• I/O interface to data storage,

• offline data analysis algorithms,

• build system and release management software.

These components and their interconnections are usually referred to as the software frame-
work.

Main components of the full framework and its information flows are illustrated in Fig-
ure 2. Although not all the components presented there are really mandatory at the detector
design stage, we must keep them in mind to make further framework development easier.

We adopt the following guiding principles to work on the detector software:

1. Rely on trusted existing solutions where it is possible.



Figure 2. The SCT detector software and data flows scheme.

2. Adopt the best practices of collaborative software development, including the code
style guidance and code reviewing procedure.

3. Be in touch with and contribute to the global community of the detector software de-
velopers.

In particular, we follow the Key4HEP[2] project and we look forward to benefit from it.

2 The framework
The SCT detector software framework is based on Gaudi[3] and has name Aurora. It covers
all the aspects of software components interaction at runtime, including configuration, data
exchange and job running. Aurora uses Semantic Versioning[4] to indicate breaking changes
in its public API and provided abilities. A breaking change will result in a new major version.

The framework architecture follows the traditional scheme: it separates code and data.
Physics data are processed by Algorithms on event by event basis. An algorithm takes input
data, manipulates it and produces new output data. Some parts of this work may be delegated
to Tools. The framework provides data stores for data exchange between algorithms.

Tools and algorithms are implemented with C++. Python is used for configuration and
steering scripts. The standard computing environment for the framework is Scientific Linux 7
at x86_64 architecture, with GCC 9 as the main compiler. Python 2 is still used, however
transition to Python 3 is anticipated in the nearest future.

The data flow in the processing chain is conventional. Events are generated by the cho-
sen generator, then injected into the simulation, yielding the event picture in the detector.
The picture is processed with digitization modules, their output data format being exactly the
same as it would be for the real detector hardware. Thus the reconstruction could operate
with either simulated or real (in future) data. Reconstructed events are analyzed using corre-
sponding high-level tools. On each stage of this chain the intermediate data could be routed
directly from one module to another, or stored and read back later.

2.1 Event Data Model

The SCT detector event data model (EDM) is implemented as C++ plain-old-data (POD)
objects. Data persistence is currently implemented via the ROOT[5] format. This format
provides fast and straightforward I/O interface.



The EDM objects are defined in a single yaml[6] file. PODIO[7] package is used to
generate actual C++ classes and provides serialization mechanisms to store/retrieve data.
Described scheme is embedded in the Aurora framework via the DataModel package. The
EDM is not stabilized yet, as the software development process often requires to introduce
new data objects.

Large data flow and large volume of stored data are expected during operation of the ex-
periment. It imposes strict requirement on the SCT EDM. It should be carefully designed
to provide fast I/O, optimal event size and standardized interface for the data analysis algo-
rithms.

We consider to rebase our data model to the EDM4hep[8] later.

2.2 Event Generators

The required set of event generators should provide a reasonable description of e+e− inter-
actions in the energy range between 2 and 6 GeV. Generators can be divided into three
categories

1. Exclusive decays of hadrons and tau lepton. The EvtGen[9] generator covers the de-
cays of hadrons, and Tauola[10] generator cover the decays of tau leptons. Final-state-
radiation is simulated by the PHOTOS[11] generator. Inclusive fraction of charmonia
decays is simulated with the Pythia[12] generator.

2. Inclusive generators for e+e− → hadrons. This is a challenging task and only a prelim-
inary solution based on Pythia generator is implemented at the moment. Experimental
input and careful parameter tuning are required to achieve reasonable description of
the e+e− → hadrons processes in the energy range of the SCT experiment.

3. Generators for luminosity measurements and calibrations (MCGPJ [13],
BabaYaga [14], BBBREM [15], KKMC [16] and other).

Primary generators produce output in the HepMC3[17] format which is immediately con-
verted to SCT EDM and can be serialized or used as input to the SCT detector simulation
algorithm.

2.3 Detector geometry description

A uniform detector geometry description should be provided for all software modules thus
making sure the same geometry is used at all stages of data processing. Each detector sub-
system has a corresponding geometry software package. If there are several options for a
subsystem, each option has a separate package. For example, there are TPCGeo, CmuR-
WELLGeo and SiStripGeo packages for the inner tracker. A user must select the desired
variant when starting a job.

The DD4Hep[18] toolkit is our choice for this task. The geometry description consists
of one or more XML files containing subsystem elements shapes, sizes, materials, visual-
ization attributes, readout parameters etc. The corresponding C++ class interprets the XML
description and creates all necessary objects.

2.4 Detector response simulation

This is actually a two-stage process. First, the detector simulation module uses Geant4[19]
for particle propagation and hit generation. DD4Hep provides a special tool DDG4 to supply



the uniformed geometry description to Geant4. At the end of the simulation stage, each
generated hit contains information about the corresponding minimal detector element (called
segmentation cell in DD4Hep terms and determined by readout parameters set in geometry
description) and energy deposited there. This is a so-called G4Hit.

Digitization, i. e. conversion of hits generated by Geant4 to a form of data read from
real detector hardware (RawHit), is performed by ad-hoc algorithms, sometimes quite trivial,
sometimes rather complicated, developed by subsystems experts. The RawHit consists of an
electronics channel identifier and data “read” from the channel.

2.5 Event reconstruction

This is also two-level procedure. Basic reconstruction reads RawHit sets for the subsystem
and uses them to restore positional/energetic/temporal information forming corresponding
reconstructed hits. Each subsystem group should provide a basic reconstruction package for
its subsystem.

Then, the reconstructed hits are combined in a subsystem or in several subsystems to
form tracks, clusters or some another high-level objects. Among the options for the track
reconstruction package GenFit[20] and ACTS[21] are considered at the moment.

Calorimeter reconstruction is based on a generic topo-cluster technique.
There is no final solution yet for Cherenkov light rings reconstruction. Various algorithms

including parallel processing at FPGA are under investigation.

2.6 Parametric detector model

A parametric simulation is a tool to receive a detector response without detailed description of
interaction of particles with matter. The detector response is obtained using random number
generating whose distribution density is described with a small set of parameters. Initially
developed as a standalone Python application, the parametric simulation has been recently
merged into Aurora and now is being converted to C++ code where it is appropriate. The
development and testing goes on continuously to keep the parametric simulation in sync with
updates in subsystem-specific and general software.

The main algorithm collects responses from each detector subsystem for each primary
generated particle. Responses are stored in an output collection, while input particles can be
generated in advance or just in time. Each detector subsystem (there are tracker, calorimeter,
FARICH PID and muon subsystem at the moment) is implemented as a Gaudi tool with the
corresponding interface. The tracker and the calorimeter smear particle parameters according
to the Gaussian distribution, while the FARICH PID and the muon subsystem use for that pur-
pose the results of a pre-conducted standalone full Geant4 simulations. There is also a helper
package for geometrical objects and operations like lines and helices and their intersections
with cylinders and planes.

The parametric simulation yields the detector response in the SCT EDM format thus
allowing to analyze its result in the same manner as the result of the full simulation.

2.7 Offline data analysis

The Analysis module implements high-level tools for the offline analysis of reconstructed
events. The analysis procedure is candidate-based meaning that candidates of the process of
interest (e. g. D0 → K−π+ decay) are searched in each event, and necessary information is
saved for each candidate. The guiding principles behind software for the offline analysis are:
1) the analysis tools should implement all required data manipulations, 2) the analysis tools



should be easy to use, 3) an analysis should be easily reproducible, and 4) the analysis result
should be in a standardized format. These principles imply that a user would be forced to use
only provided high-level tools and not process low-level data him or herself and impose strict
requirements to the analysis tool: to be versatile, extendable, and user-friendly.

The following features are implemented in the Analysis module at the moment:

• accessing reconstructed final-state-particles (input for the analysis),

• formation of candidate list for arbitrary particle decay,

• imposing selection criteria,

• applying kinematic constraints to reconstructed particle decays,

• saving the resulting information to a flat ROOT TTree for further analysis (analysis output).

The Analysis module is going to be permanently improved and extended.

2.8 Service tools

Test tools

The geometry validation package includes a tool allowing volume overlap checking (both at
the DD4Hep level and in the Geant4 simulation). There is also geometry hierarchy printing
and material scanning tools based on DD4Hep.

Using these tools, geometry tests mechanism is implemented. The tests should be pre-
pared by a developer for each geometry package, helping in early detection of errors when
modifying the geometry.

Visualization

There are two visualization programs (Figure 3) relying on DD4Hep component DDEve.
The geometry display is just for drawing the detector subsystems in various combinations.
The event display also reads and shows events. While the geometry display is rather robust
already, the event display is still at the very basic stage, partially due to yet not finalized
EDM.

Figure 3. Geometry (left) and Event (right) display tools. A ψ(4040) hadronic decay in central part of
the detector is presented at the event display.



Build and version control systems

Build system of the software stack is based on a similar one from the ATLAS[22] experiment.
External standard HEP packages are built using LCGCMake[23] infrastructure. The software
development workflow utilizes GitLab[24] as a version control and project management sys-
tem. A continuous integration mechanism, utilizing test tools mentioned above, allowing
regular test builds and merge requests processing is going to be introduced.

3 Conclusion

The SCT software development goes on promptly, for both the core framework and
subsystem-specific parts, with more experimental groups joining the activity. Some of the
framework components are absent yet (for instance, the conditions database), being irrele-
vant at the present stage of the project.

The Aurora framework now contains all tools minimally required at the present stage of
the SCT detector project development:

• set of primary event generators,

• usable in analysis parameterized simulation,

• detector geometry (with at least basic description for all detector elements, and several
options for some subsystems),

• full Geant4-based simulation,

• sample digitization module,

• reconstruction modules (from basic to really advanced, depending on subsystem),

• analysis and job configuration tools,

• test and service tools.

This allows us to officially announce the Aurora 1.0.0 release. Actual physics analysis is
already possible with the release.

The nearest goals for the software development are:

• implementation of digitization modules for all subsystems,

• further reconstruction improvements, including adoption of some high-level tools, i. e.
track finding,

• improvement of detector and event visualization tools. The underlying DDEve has been
not actively developed recently, so this is an area of possible backward contribution to
DD4Hep,

• distribution of the software via CvmFS[25].

We are looking forward to prepare next major release of the framework till the end of year
2021.
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