SUPER $c-\tau$ parametric simulation Status

M. Belozerova, V. Vorobyev, G. Razuvaev

9th August 2019

• Initial integration of SctParSim to Aurora was done with help of DM.

- Update the data model.
- Updated a command line argument parser in runparsim.py.
- Little improve on tracking of not-detectible particles in Helix.py.
- Muons now are drawing and e^{\pm} gives a curve track on the EventDisplay.
- Particle's names are shown on the EventDisplay.
- Tracker parametrisation was updated (MB) [stand-alone].
- Time-of-Propagation was added [Aurora].
- The muon system (plastic) was added (MB) [stand-alone].
- The FDIRC system was added (MB) [stand-alone].

- Global moving from stand-alone to Aurora.
 - Need to move Mu, FDIRC and updated Tracker as well as the data model should be updated.
 - Make a merge request to the main Aurora project.
- The Mu-system needs validation check, it seems there there is some misunderstanding of input from TU.
- The package as whole needs a test that it's adequate (AB?).
- PyPODIO lacks writing of OneToOneRelation and OneToManyRelation. Want to fix this.
 - $\bullet\,$ A minimal example is almost done. It'll be send to VV $\rightarrow\,$ Frank Gaede with explonations.
 - But there is a group of people (DM *et al.*) who whant to make a better data format within one year or so.
 - We already have a hook around this problem (it works, but isn't beautiful).
 - Python \rightarrow C/C++?

Where are we in Aurora?

Визуализатор (событие с $D^0\to K^-\pi^+\pi^0)$

Результат моделирования

```
Выходные данные складываются в ROOT-дерево в формате PODIO.
```

```
Внутри сохраняется связь между генераторными 
вершинами/частицами, реконструированными 
объектами и откликами подсистем.
```

```
tree = input_file.Get( 'events' )
for eve in tree:
    for ptcl in eve.Particles:
        if ptcl.topld == -1:
            continue
        ttot = eve.ToPHits[ptcl.topld].ttot
```

events – EvtInfo - MCParticles - GenVertices – Particles -core.p4 -mcPtc -trkld -cluld -topld ToPHits -ttot

Detector subsystems

	Subsystem	Parametrisation	PAPAS/HEPPY	SctParSim	
				Stand-alone	Aurora
Tracker	Si strip	no	no	no	no
	TPC	no	no	no	no
	GEM tracker	no	no	no	no
	Drift chamber	yes×2	yes _{BaBar}	yes _{BaBar} + sct	yes _{BaBar}
Calo	pure Csl	yes	yes	yes	yes
	LXe	no	no	no	no
PID	ToF	yes	yes	yes	yes
	ToP	yes	yes	yes	yes
	ASHIPH	yes×2	yes×2	yes $ imes$ 2	yes $ imes$ 2
	FARICH	yes	yes	yes	yes
	DIRC	yes	no	yes	no
	Mu (plastic)	yes	no	yes	no

- Схема столкновений «Crab Waist»
- Диапазон энергий: от 2 до 6 ГэВ
- Светимость $10^{35} \, \mathrm{cm}^{-2} \mathrm{c}^{-1}$
- Продольная поляризация электронов в месте встречи

 e^- po

e

Физические задачи

Очаровательная физика

- Измерение силных фаз в распадах *D*-мезонов
- Поиск запрещённых или сильно подавленных распадов с-кварка
- Поиск СР-нарушение

Δ

au-физика

a ...

- Измерение параметров τ -лептона с высокой точностью
- Параметры Мишеля.
 Проверка лептонной универсальности
- Прецизионное измерение адронных распадов *т*-лептона
- Поиск *СР*, *Т* нарушений в распадах *т*-лептона

КХД

- Физика возбуждённого кваркония
- Молекулярные состояния
- Пороговые взаимодействия барионов
- Поиск глюболов в распадах J/ψ и ψ'

Ο ...

Вопросы, на которые нужны ответы в рамках разработки и расширения физической программы:

- Какие требования выдвигаются к подсистемам детектора?
- Какую точность мы ожидаем достичь в анализе с тем или иным детектором?
- Какие системы идентификации нам нужны?
- Что s $c\tau$ может предложить по сравнению с Belle II и LHCb?

Технические вопросы:

- Разработка модели хранения данных.
- Разработка инструментов анализа данных.
- Привлечение людей к анализу на scт.
- Налаживание обратной связи.

О проекте

Развитие во времени:

- PAPAS на C/C++
- PAPAS в составе HEPPY на Python
- PODIO + FCC-EDM + SctParSim на Python
- PODIO + FCC-EDM + SctParSim на C/C++

Команда:

- Разработчики:
 - Воробьёв В., РГ, Белозёрова М.
- Представители систем:
 - Барняков А., Тодышев К., Углов Т.
- Пользователи:

• ...

Ссылки:

- https://ctd.inp.nsk.su/wiki/index.php/Parametric_simulation
- https://git.inp.nsk.su/vvorob/sctparsim

PAPAS — PArametric PArticle Simulation

- HEPPY High Energy Physics with PYthon
- PODIO Plain Old Data Input/Output
- FCC-EDM Future Circular Collider Event Data Model

Схема детектора

Рабочая цепочка

Главная последовательность рабочего процесса излагается в одном python-скрипте.

```
detector = SctDetector('./cfg/sctdet_std01.cfg')
instore = EventStore(finname)
el = EventLooper( instore, detector, foutname, gunmode=False )
el.run( neve )
```

Описание параметров детектора двояко:

- Есть конфигурационный файл, где могут быть описана геометрия, разрешения, ссылки на вспомогательные файлы.
- Парметры описаны внутри класс соответствующей подсистемы.
- Каждая подсистема детектора представляет собой толстостенный цилиндр.

Пример из *.cfg файла:

Разрешения, вероятности, отклик можно формировать как с помощью функций, так и чтением табличных данных.

```
class SctToF(CylindricalLayer):
    def __init__(self, rln, zMin, rOut, zMax, hole_r):
    def process(self, gp, field, t0=0.):
    def measuredTime(self, t):
```

```
class ToFHit(object):
    idx = 0
    def __init__(self, time, position):
        self.time = time
        ToFHit.idx = ToFHit.idx + 1
```

Статус:

- Сейчас параметризация соотвтетствует ДК BaBar (*р* и *dE*/*dx*) (К. Тодышев).
- Есть нереализованная параметрицзация ДК scτ (p) (К. Тодышев).
- Внутреннего трекера (пока) нет.

Задачи для внутреннего трекера:

- Эффективная регистрация мягких треков.
- Эффективная регистрация треков под малыми углами.

- Размер кластера разный для e^{\pm} , γ и μ^{\pm} , π^{\pm} , K^{\pm} , p^{\pm} и т. д.
- Модель разрешения

$$\sigma_E = \sigma_0 \oplus \frac{\sigma_1}{E} \oplus \frac{\sigma_2}{\sqrt{E}} \oplus \frac{\sigma_3}{\sqrt[4]{E}}$$

 Числа из презентации Д. Епифанова для чистого Csl калориметра (https://indico.inp.nsk.su/event/13/session/ 10/contribution/17/material/slides/0.pdf)

- Вычисляем время долёта частицы до ToF.
- Учитываем временое разрешение (нормальное распределение, сейчас $\sigma = 35$ пс).
- Учёт время события, добавляем ко всем измерениям одинаковую Δt_0 .
- Записываем для частиц номинальную длину трека.

FARICH

- Определяется ожидаемое число фотоэлектронов N₀ для данной длины трека в радиаторе и *beta*.
- Разыгрывается число зарегестрированных фотоэлектронов согласно распределению Пуассона — N.
- Если N ≥ 4, то считаем, что эллипс восстановлен.
- Для частиц с реконструированным эллипсом β размазывается согласно табличным данным.

ASHIPH

- Два разных радиатора:
 - *n* = 1.015, толщина 16 см;
 - *n* = 1.030, толщина 8 см.
- Учёт черенковского света от самой частицы и δ -электронов.
- Учёт вклада шумов КФЭУ.

Momontum

Запуск обработки файлов первичного генератора.

\$./runparsim.py -i input/file.root -o output/file.root -n 1234 -b

Запуск с тестовыми частицами.

```
$ ./runparsim.py gun —o output/file.root —n 1234 —b
$ ./runparsim.py gun —igun gun/conf/file.cfg —o out.root —n 666 —b
```

Визуализатор (событие с $D^0\to K^-\pi^+\pi^0)$

MB, VV, GR (BINP)

SctParSim

9th August 2019 24 / 30

Набросок анализа $D^0 o K^- \pi^+ \pi^0$

MB, VV, GR (BINP)

Первые результаты...

A. Yu. Barnyakov, The Super $c-\tau$ Factory particle identification system options, PhiPsi 2019, https://doi.org/10.1051/epjconf/201921201012

Инструменты для физического анализа

Взяты исходники Belle II — высокоуровнего инструмента отбора событий.

В течение года планируем сделать первую рабочую версию.

Top-10 topics for feasibility studies

- Soft tracks detection
 - $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ $\Lambda \rightarrow \rho X$
- Weak J/ψ decays via the c
 ightarrow sW transition

•
$$J/\psi \rightarrow D_s^{(*)+} l\nu$$
 with expected $\mathcal{B} = 3 \times 10^{-9}$
• $J/\psi \rightarrow D_s^+ \rho^-$ and $J/\psi \rightarrow D_s^{*+} \pi^-$ with $\mathcal{B} = 3 \times 10^{-9}$
• $J/\psi \rightarrow D^0 \rho^0$ with expected $\mathcal{B} = 2 \times 10^{-11}$
• $J/\psi \rightarrow D^0 \pi^0$ with expected $\mathcal{B} = 0.6 \times 10^{-11}$

- Rare charmonium transitions
 - Electric dipole transitions $\eta_c(2S) \rightarrow h_c \gamma \ (2.5 \times 10^{-3})$ and $\eta_c(2S) \rightarrow \chi_{c2} \gamma \ (2 \times 10^{-3})$
 - Magnetic dipole transitions $\eta_c(2S) \rightarrow J/\psi\gamma$ (3×10^{-5}) and $h_c \rightarrow \chi_{c0}\gamma \ (\sim 10^{-6})$
- Measurements of absolute branching fractions
 - $Br(D^0
 ightarrow {\cal K}^- \pi^+)$ with double tag technique
 - $Br(D^+ \to K^- 2\pi^+)$ with double tag technique
 - $Br(\Lambda_c^+ \to pK^-\pi^+)$ with double tag technique
- Decays with ${\cal K}^0_L$ meson $(D^0 o {\cal K}^0_L \pi^+ \pi^-)$
- Search for $\tau \to \mu \gamma$ decay
- https://ctd.inp.nsk.su/wiki/index.php/Top-10_topics_for_feasibility_studies

 Hadronic τ decays (CP asymmetry, strong coupling constant, CKM matrix element, strange quark mass measurements)

•
$$\tau \to \pi^+ \nu$$
 • $\tau \to K_S^0 \pi^+ \nu$

•
$$\tau \to K^+ \nu$$
 • $\tau \to K^+ \pi^0 \nu$

- (Semi-)leptonic $D_{(s)}$ decays
- Measurements of strong phases with quantum correlations in $\psi(3770) \to D^0 \bar{D}^0$
 - $\delta_{K\pi}$ for $D^0 \to K^- \pi^+$
 - $\delta_{K\pi\pi}$ and coherence factor for $D^0 \rightarrow K^- \pi^+ \pi^0$
 - Binned Dalitz plot parameters for $D^0 o K^0_S \pi^+ \pi^-$
- Measurements utilizing polarized beams
 - Michael parameters measurement and lepton flavor universality test with $\tau^- \to l^- \nu_\tau \bar{\nu}_l$
 - Weinberg angle via the $\sigma(e^+e^-
 ightarrow J/\psi)$ asymmetry
 - Beam polarization, $\Lambda^0 \rightarrow p\pi^-$ decay parameter and CP asymmetry measurements in $J/\psi \rightarrow [\Lambda^0 \rightarrow p\pi^-][\bar{\Lambda}^0 \rightarrow \bar{p}\pi^+]$

Готовые файлы моделирования

Mother particle	Ecms, GeV	Root particle
J/ψ	3.096	J/ψ
ψ (2S)	3.686	ψ (2S)
ψ (3770)	3.773	ψ (3770)
ψ (4040)	4.04	ψ (4040)
$q\bar{q}, q \in \{u, d, s\}$	3.773	γ^*
$ au^+ au^-$	3.55364	γ^*
$\Lambda_c^+\Lambda_c^-$	4.58	γ^*
$\equiv^0_c \equiv^0_x$	4.95	γ^*

Decay channel	Ecms, GeV	Root particle	
$D^+ o au^+ u$	3.77	ψ (3770)	
$D^+ o \mu^+ u$	3.77	ψ (3770)	
$D^+ o e^+ u$	3.77	ψ (3770)	
$D^+ o K^- \pi^+$	3.77	ψ (3770)	
$D^+ o K^- \pi^+ \pi^0$	3.77	ψ (3770)	
$D^+ o K^- 3 \pi^+$	3.77	ψ (3770)	
$D^+ o K^0_S \pi^+ \pi^-$	3.77	ψ (3770)	
$ au ightarrow \mu \gamma$	3.6	γ^*	
$ au o \mu \pi^0$	3.6	γ^*	

https://ctd.inp.nsk.su/wiki/index.php/MC_Data_Sets

Заключение

Статус

- Готов каркас системы параметрического моделирования.
- Реализован ряд подсистем детекторомра.
- Первые результаты по исследованию систем индентификации.

Планы

- Продолжить внедрение различных подсистем детектора.
- Уточнение параметризации подсистем.
 - Ложные срабатывания.
- Реалистичная модель физической реконструкции.
 - Наложение хитов.
- Разработка инструментов для анализа.
 - Кинематическая реконструкция.

Прглашаем к сотрудничеству.

Учёт dE/dx и рассеяния на малые углы?Нет.Подмешивание шумовых срабатываний, ложные треки, фоновые фотоны?Нет.Учёт наложения кластеров в калориметре?Пока нет.Возможно ли геометрическое перекрытие подсистем?Да.