

Супер С-Тау фабрика В.С. Воробьев

Научная сессия ИЯФ

31 января, 2020

 \succ

 \succ

2

100 m

Параметры коллайдера

* С двумя $B_{\rm w} = 3.5$ Т вигглерами, которые подавляют внутрипучковое рассеяние

Энергетический диапазон

«Баланс очарования»

Эксперимент	Сегодня	Завтра	
LHC <i>b</i>	9 фбн ^{–1} @ Runs 1 and 2	50/300 фбн ⁻¹ @ Run 3/4	x5/3(
B factory	1 абн ⁻¹ @ Belle & BaBar	50 абн ⁻¹ @ Belle II	x50
c - τ factory	~100 фбн ⁻¹ @ BESIII	~10 абн ⁻¹ @ SCT	x100

- > Преимущества порогового рождения
 - Пороговая кинематика
 - Ясное начальное состояние
 - Когерентное рождение $D^0\overline{D}^0$ пар
 - 🗸 Техника «double-tag»
 - ✓ Малая множественность (4-5)
 - Поляризованный пучок
- Высокая эффективность регистрации нейтральных частиц
- В каждом эксперименте есть преимущества и недостатки
- Сегодня существует деликатный баланс между экспериментами
- Супер С-Тау позволит сохранить этот баланс в будущем

Физическая программа

Детектор

• Требования

- Хорошее импульсное разрешение
- Хорошая герметичность
- Регистрация мягких треков с $p_t \gtrsim 50$ МэВ
- Хорошее $\mu/\pi/K/p$ разделение до 1.5 ГэВ
 - *dE/dx* в трековой системе
 - Специальные системы для μ/π и π/K разделения
- Хорошее π⁰/γ разделение и регистрация γ в диапазоне энергий от 10 МэВ до 3000 МэВ
 - Хорошее энергетическое разрешение в калориметре
 - Быстрый калориметр (σ_t < 1 нс) для подавления пучкового и pileup шумов
- <mark>DAQ rate</mark> ~300 кГц @ *J*/ψ

Прогресс за 2019 год I: ускорительный комплекс

По слайдам А. Богомягкова

- Оптимизировано расположение сибирских змеек (И. Кооп)
- Выполнен анализ нелинейной динамики (quadrupole fringes, kinematic terms, crab sextupoles). В результате
 - Вставлены дополнительные секступоли и октуполи
 - Увеличена динамическая апертура
 - Получена достаточная полоса пропускания
- Численная оптимизация параметров для увеличения светимости, включая реалистичную нелинейную оптику, IBS, пространственный заряд, beam-beam эффекты и др. (Д. Шатилов)
- Реалистичный дизайн MDI (С. Синяткин)
- 3D дизайн линз финального фокуса (И. Окунев)
- Реалистичный дизайн нового инжектора (2 × $10^{11} e^+/c$) (А. Петренко)

Прогресс за 2019 год II: внутренний трекер и фон

По сообщению Л.И. Шехтмана

- Моделирование загрузки внутреннего трекера с подробным описанием материалов места встречи (Л.И. Шехтман)
 - Поток заряженных частиц в области внутреннего трекера в диапазоне 10^5 10^3 см⁻²с⁻¹
 - Эквивалентный поток 1 МэВ нейтронов для Si ниже 10¹¹ n см⁻² в год
 - Необходима радиационно-стойкая электроника
- Работа над моделированием ТРС (объемный заряд) (Т. Мальцев, А. Соколов)

Прогресс за 2019 год III: дрейфовая камера

- Написан меморандум проекту ДК
- Проведены расчёты пространственного разрешения в GARFIELD
- Выполнены работы по исследованию параметров планируемой газовой смеси
- Выполнен расчёт нагрузки на элементы конструкции ДК и коэффициентов устойчивости при заданных параметрах
- Проведены испытания образцов проволоки для предполагаемой ДК

По сообщению К. Тодышева

Прогресс за 2019 год IV: система ФАРИЧ

• Полное stand-alone моделирование отклика ФАРИЧ с оптическими фотонами (**В. Бобровников**)

Прогресс за 2019 год V: калориметр

По сообщению Д. Епифанова

- Подготовлена и собрана механическая часть прототипа (16 кристаллов с алюминиевыми защитными коробами)
- Произведено 16 спектросмещающих пластин, к каждой пластине были приклеены по 4 ЛФД, измерены их характеристики
- Изготовлены и настроены 16 четырёхканальных ЗЧПУ, измерены их характеристики
- 5 четырёхканальных плат усилителей-формирователей-оцифровщиков были модифицированы для обработки сигналов с новых ЗЧПУ
- Один полностью собранный счётчик был протестирован на тестовом электронном пучке на РОКК-1М. Получены ожидаемые спектры энерговыделения.
- Ведётся сборка всех счётчиков прототипа
- Организован стенд для работы с новой 16-тиканальной платой усилителейформирователей-оцифровщиков-процессора Shaper-DSP в VME формате, начаты работы по разработки ПО для платы

Прогресс за 2019 год VI: ПО для детектора

- Система сборки ПО и выпуска релизов вошла в регулярную работу (**Д. Максимов, А. Сухарев**)
- Создано описание геометрии вакуумной камеры, ДК, калориметра
- Параметрическое моделирование создано и интегрировано в общее ПО детектора (Г. Разуваев, М. Белозерова)
- Создана первая версия реконструкции калориметра, интеграция в общее ПО в процессе (В. Иванов, И. Булыженков)
- Разрабатываются и интегрируются в общее ПО средства для отбора событий (В. Воробьев, Д. Яковлев)

По сообщению Д. Максимова

Прогресс за 2019 год VII: физическая программа

- 1. Изучена возможность измерения параметров Мишеля в распадах таулептона на с поляризованным электронным пучком (**Д. Епифанов**)
 - При степени поляризации больше 0.5 SCT имеет преимущество по сравнению с Belle II
- 2. Измерение угла Вайнберга на Супер С-Тау фабрике с data-driven мониторингом степени поляризации пучка (arXiv:1912.09760, отправлено в JHEP) (Бондарь, Грабовский, Резниченко, Руденко, Воробьев)
- 3. Измерение порогового сечения рождения барионов на Супер С-Тау фабрике (**Бобров, Бондарь**)

Регулярное международное рабочее совещание

- 24-28 сентября 2019 года, Москва
 - c-tau.ru
 - 37 докладов
- Следующее совещание состоится в Китае в 2020 году

Европейская стратегия

- Проект Супер С-тау фабрики вошел в Physics Briefing Book по итогам симпозиума в Гранаде и наверняка будет упомянут в обновленной европейской стратегии по физике элементарных частиц
- <u>https://arxiv.org/abs/1910.11775</u> (CERN-ESU-004)

CERN-ESU-004 10 January 2020

Physics Briefing Book

Input for the European Strategy for Particle Physics Update 2020

Electroweak Physics: Richard Keith Ellis¹, Beate Heinemann^{7,3} (Conveners) Jorge de Blas^{5,4}, Maria Cepeda⁴, Christophe Groijean²⁵, Fabio Maltonik⁴⁵, Aleandro Nisati¹⁰, Ellisabeth Petäl¹¹, Riccardo Rattazzi²¹, Wonter Verkerke¹³ (Conventibutors)

Strong Interactions: Jorgan D'Hond¹⁴, Kary staf Redick¹⁵ (Converse) Anton Anthonic," Feenex Sakk¹² (Cosingis Screensaries) Nester Ammesto¹⁸, Daniel Boer¹⁹, David d'Enterna²⁷, Totyana Galayuk²¹, Thomas Gehermann²², Khuns Kinch²³, Uu Kien²⁴, Jacob Hanburg²⁰, Harman Wing²⁰, Un Wiedeamm²¹ (Convinced) Johanna Stack¹², Tanguy Percog²⁰, Harman Wing²⁰, Un Wiedeamm²² (Convinced) Johanna Stack¹², Tanguy Percog²⁰, Harman Wing²⁰, Un Wiedeamm²² (Convinced)

Hawar Physics: Beilen Gavela¹⁰, Autorio Zaccoll²¹ (Conversar) Sanda Maivezzi¹⁰, Ana M. Teineira¹⁰, Jane Zupan¹⁰ (Scienijie Scientarics) Daniel Aloni¹⁰, Augusto Cecuccu²⁰, Avital Dey¹⁰, Michael Diae¹⁰, Svethara Fajler¹⁰, Stefania Gori¹⁷, Gadran Hiter¹⁷, Gano Isider¹¹, Yoshikata Kano⁶¹, Alberto Lusian¹¹, Yosef Ne²⁰, Maris-Helene Schute²¹, Marco Sazri¹⁰, Sephan Paul¹¹, Carolo Real¹¹ (Convintuors)

Neutrino Physics & Cosmic Messengers: San Bentvelsen⁴⁵, Marco Zdio^{06,67} (Commerce) Albert De Rock.²⁶, Thomas Schwetz²¹ (Scientific Scoratorics) Bonie Fleming⁴⁶, Francis Halzen⁴⁰, Andreas Huang.²⁷⁰, March Kowabali², Susame Mertens⁴⁴, Mauro Mezretto⁷, Shiu Pascol⁴⁰, Bangalore Sathyaprakah⁵¹, Nicola Serra²² (Contributori)

Beyond the Standard Model: Gian F. Giudice²⁰, Paris Sphicas^{20,22} (Conveners) Juan Alcaraz Maester⁶, Caterina Dogino¹³³, Gaia Lantranch^{20,34}, Monica D'Onoftio²⁴, Matthew McCalleugh²⁰, Giala Perez²⁶, Philipp Roloff²⁰, Veronica Sanz²⁵, Andreas Weiler⁴⁴ Andrea Wattr^{41,222} (Counsilizator)

Dark Matter and Dark Sector: Shoji Asa¹⁶, Marcela Carena⁵⁷ (Conveners) Babelle Dobrich²⁶, Caterina Doglioni²⁷, Joreg Jacckel²⁹, Gordan Kmjac⁵⁷, Jocelyn Monroe¹⁸, Konstantion Petidio²⁷, Christoph Weingel²⁶ (Sciening Escorataries/Constitutors)

Accelerator Science and Technology: Caterina Biscart⁶¹, Leonid Rivkin⁶² (Conveners) Philip Burrows³⁶, Frank Zimmerman¹⁰ (Sciengife Sovertaries) Michael Benedek²⁰, Pertaigi Campana⁴¹, Fdak Gehovendhere⁴⁷, Fak Hener²⁰, Mike Lamont²⁰ Wim Leeman⁵², Lacio Rossi⁴⁰, Daniel Schulte²⁰, Mike Scieler⁶³, Vladimir Shitese⁶⁰, Steinst Sapies²⁶, Akira Yamanoto²⁰⁴⁴ (Contributory)

Steinz Szpacs²³, Akix Yanamoto^{25,44} (Contributors) **Instrumentation and Computing:** Xinchou Los⁴³, Rejiste Vachoff (Conveners) Roger Jone⁵⁶, Finilia Logrande²⁶ (*Costatis Costantica*) Ian Ber²⁰, Simone Campung²⁵, Artelia Cattas²⁶, Dider Contardo⁴⁶, Cinzia Da Vaff, Panzesco Fort¹³, Maria Grove²⁶, Mathias Kaseman²⁷, Lacki Linse²⁶, Felix Schoor, "Genera Besard²⁷(Corrinduct)

Editors: Halina Abramowicz⁷¹, Roger Forty²⁰, and the Conveners

Гранты

- РНФ «Разработка системы моделирования, обработки и хранения установки класса мегасайенс "Супер С-тау фабрика"»
 - Участники: ИЯФ, ИВМиМГ, ССКЦ, ИВТ
 - Сроки: 2019-2023
 - Финансирование: 6 Мруб/год
 - Необходимо опубликовать 10 статей
- 2. CREMLINplus WP5 «Joint technology development around SCT and future lepton colliders»
 - Участники: ИЯФ, CERN, INFN, LAL Orsay, Giessen U.
 - Сроки: 2020-2024
 - Финансирование: около 2 Мевро на 4 года
 - Необходимо изготовить прототипы для внутреннего трекера, дрейфовой камеры, системы идентификации, выпустить релиз ПО для детектора

European Commission

Заключение

- Работа по проекту Супер С-Тау фабрики ведется
 - Серьезное развитие проекта ускорительного комплекса в 2019 году
 - Рабочие группы по подсистемам детектора работают над прототипированием и моделированием
 - Активно ведется разработка ПО для детектора
- По-прежнему есть ощутимая поддержка международного научного сообщества
 - Регулярные совещания со значительной долей иностранцев
 - Включение проекта Супер С-тау фабрики в обновленную евростратегию
 - С 2020 года начинается финансирование работ по прототипированию подсистем детектора со стороны Евросоюза
- Необходимо работать над обновлением концептуального проекта в части детектора и физической программы

Backup

Lattice

Inner tracker

- Resolution similar to drift chamber (~100 μ m)
- Sensitive to soft tracks $(p_t\sim 50~{\rm MeV})$
- Able to handle high particle flux
- Compatible with final focus constraints
- Approximate size: \emptyset (40 400) × 600 mm

Drift chamber

- Well-known robust solution (CLEO, BaBar, Belle, KEDR)
 - Hexagonal cell
 - 41 layers, 10903 sensitive wires
 - Gas mixture with 60% He and 40% propane
- Average spatial resolution in a cell better then $90\ \mu m$
- Momentum precision of 0.4% (at 1 GeV)

$$\frac{\sigma_{p_t}}{p_t} \approx \sqrt{0.21\%^2 p_t^2 + 0.31\%^2}$$

• dE/dx precision better then 7%

An alternative proposal «TraPId» (INFN – Lecce)

Ultra-low mass, cluster counting, full stereo

Particle identification

- Quality of particle identification is critical for physics performance of a high-statistics experiment
- Several options are under consideration:
 - Focusing Aerogel RICH (FARICH)
 - $\,\cdot\,$ R&D with prototypes and test beam
 - Geant4 simulation
 - DIRC
 - Experience from BaBar and $\overline{P}ANDA$
 - Geant4 simulation
 - Time-of-flight (+time-of-propagation)
 - Parametric simulation

More details can be found at a recent charm-tau workshop page c-tau.ru/indico/event/3/timetable/

Calorimeter

Baseline option

• Belle, Belle II-like electromagnetic crystal calorimeter

Scintillator

- CsI(Tl) has large light yield, "cheap", very popular, but slow
- LSO, LYSO, etc. have large LY, very fast, but very expensive (x10)
- Pure CsI is a good compromise: reasonable LY, 30 ns component, reasonable price

$$\frac{\sigma_E}{E} \approx \frac{1.9\%}{\sqrt[4]{E(GeV)}} \oplus \frac{0.33\%}{\sqrt{E}} \oplus \frac{0.11\%}{E}$$

• Active R&D is being performed including prototype test and Geant4 simulation

Magnet

Two options under consideration

- 1. Outside calorimeter
 - "thick" design
 - Al-stabilized coil, robust technology
 - Similar to PANDA magnet
 - Baseline option
- 2. Just outside drift chamber
 - "thin" design, 0.1 X₀!
 - CMD-3 experience
 - Pros and cons are under investigations

Correcting

coils

Baseline option

Thin solenoid option

Muon system

- Purpose
 - To detect muons (note mult. scat. of $\mathcal{O}(1 \text{ cm})$
 - μ/π separation
 - K_L detection

Baseline option

- Scintillator strips + WLS fiber
 + SiPM
- Similar to Belle II and CMD-3
- 8-9 layers inside iron yoke to be able to stop K_L mesons
- Total surface of $\sim 1500 \text{ m}^2$

В.С. Воробьев, Научная сессия ИЯФ СО РАН 2020

DAQ and data analysis/storage

Online DAQ components External **BINP** users Output buffer users HLT External Internal Event Builder gateway gateway FLT Long-term storage Buffer (tapes) Offline Detector Virtualized computing center Disk Information storage Simulation, Reconstruction, system (DB) Data analysis Main raw Internal data Internal data flow migration connections

Requirements

- Maximum input data rate 20 GB/s
- Total storage system capacitance
 ~300 Pbytes
- Computing power
 ~1 Pflops

Can be implemented with commercial solutions

Simulation and analysis software

The full-scale simulation of the SCT experiment is being rapidly developed

SCT detector software framework Aurora

- Widely used HEP tools (ROOT, Geant4, ...)
- Gaudi and Athena-inspired build and config system
- Event data model based on **PODIO**
- Detector geometry based on DD4Hep
- Specific SCT modules are being developed
- Dedicated RSF grant for development of SCT software and design of data analysis hardware infrastructure

Status of the project

- 2011: selected as one of six mega-science projects to be built in Russia
- There are
 - Roadmap
 - Conceptual design (ctd.inp.nsk.su)
 - Preliminary civil engineering design
- CERN, IHEP, INFN, KEK and other organizations expressed their interest in the project
- SCT was included in the 2017 2019 plan for the implementation of the first phase of the Russian Strategy for Science and Technology Development
- 2019: machine layout updated and refined leading to a CDR update
- 2020: SCT is expected to be mentioned in the updated European Strategy for Particle Physics

Collaboration

- Working groups
 - Inner tracker
 - Drift chamber
 - PID
 - Calorimeter
 - Muon system
 - Magnet
 - Physics and simulations
 - Computing
 - DAQ and trigger
 - Beam background
 - Engineering

- International advisory committee
- Dedicated international workshops
 - May 2018, BINP
 - December 2018, Orsay
 - September 2019, Moscow
 - Fall 2020 in China
- Monthly online meetings with colleagues working on the HIEPA project

WGs are open for international participation

Conclusions

- 1. SCT physics program is broad and diverse. It is complementary to the Belle II and LHC*b*
- 2. There are conceptual designs of the collider and the detector and they continue to be improved and detailed by the international collaboration
- 3. R&D for the SCT factory project is partially supported by Russian government, Russian science fund, and European Commission

Back-up

SCT Physics program of Super c- τ factory

Budker Institute of Nuclear Physics Siberian Branch Russian Academy of Sciences (BINP SB RAS)

Super Charm - Tau Factory

CONCEPTUAL DESIGN REPORT PART ONE (physics program, detector)

[very preliminary draft]

Novosibirsk - 2018

Conceptual design report ctd.inp.nsk.su

Charmonium

- > Spectroscopy
- > Decays
- > Light states in J/ψ decays

Charm mesons

- > Spectroscopy
- > Decays
- Charm mixing
- CP symmetry violation

Charm baryons

- > Spectroscopy
- > Decays
- \succ *CP* symmetry violation

τ lepton

- Michel parameters
- > Spectral functions
- \succ *CP* symmetry violation
- > Lepton number conservation test
- Lepton flavor universality test

Two-photon physics

- Search for C-even resonances
- $\sigma(\gamma\gamma \rightarrow \text{hadrons})$

$\sigma(e^+e^- \rightarrow \text{hadrons})$

Status of the Super $c\text{-}\tau$ factory project

- In June 2017, the SCT project is included in the plan for the implementation of the first phase of the Strategy for Scientific and Technological Development of the Russian Federation
- In August 2017, the Russian Ministry of Education and Science and Budker Institute signed an agreement for an amount of about 0.25 bln. Rbls, which foresees the development and upgrade of the accelerator complex of BINP and the creation of scientific and technical groundwork for the implementation of the SCT

	3	<i>l</i> ear	1	Yea	\mathbf{r}^2	2	Yea	ur 3	3	3	Yea	ar 4	4	3	<i>l</i> ea	ır !	5	Yea	ar (6
Formation of management																				
Accelerator complex																				
Research																				
R&D																				
Prototyping & testing																				
Manufacturing																				
Assembling																				
Commissioning																				
Reaching the design parameters																				
Detector																				
R&D																				
Manufacturing, assembling, and testing			Γ																	
Mounting and commissioning																				
Software development																				
Building infrastructure																				
Design and research																				
Construction																				

Collider parameters

E(MeV)	1000* 1000 1500 2000 3									
П (m)			478.092							
F _{RF} (MHz)	349.9									
q	558									
2θ (mrad)	60									
к (%)	0.5									
β_x^* (mm)	50									
$\beta_{\mathcal{Y}}^*(mm)$	0.5									
$\alpha \times 10^4$	9.77									
I(A)	1	1	2.2	2.2	2					
$N_{e/bunch} \times 10^{-10}$	2.1	2.1	4.5	5.2	7					
N _b	500	500	490	420	290					
<i>U</i> ₀ (keV)	11.7	11.7	59.3	187.4	948					
V_{RF} (kV)	1000	1000	600	1000	2000					
ν_s	0.0093	0.0093	0.0059	0.0065	0.0072					
δ_{RF} (%)	3.4	3.4	2	2	1.7					
$\sigma_e \times 10^3$	1	1.2	0.9	0.8	9.6					
σ_s (mm)	7.9	9.5	11	8.8	10					
$\varepsilon_x(nm)$	11.3	16.3	8.8	7	10.9					
$L_{HG} \times 10^{-35} (cm^{-2}s^{-1})$	0.21	0.14	0.8	1.3	1.1					
HG (%)	76	72	79	82	77					
ξ_x	0.0042	0.0029	0.0031	0.0042	0.003					
ξ _γ	0.06	0.04	0.07	0.085	0.054					
φ	10	10	16	14	13					
$ au_L$ (s)	3245	4968	1803	1080	1197					

Interaction region

36

В.С. Воробьев, Научная сессия ИЯФ СО РАН 2020

© Franco Grancagnolo

Tr	aPId:	A propos	al for SC	TF				
R _n ÷	R _{out} (min)	200 - 800	cell					
active L - se	ervice area [mm]	1800 200	shape	square				
	inner cylindrid	cal wall	size [mm]	7.265 - 9.135				
C-fiber/C-foam	2×80 µm / 5 mm	layer						
sandwich			8 super-layers	8 layer each				
	outer cylindric	64 layer total						
C-fiber/C-foam	2×5 mm / 10 mm	0.512 g/cm ² - 1.2×10 ⁻² X/X ₀	stereo angles	66 – 220 mrad				
sandwich			n. sense wires [20µm W]	23,040				
	end plat	e	n. field wires [40/50µm Al]	116,640				
gas envelope	160 µm C-fiber	0.021 g/cm ² – 6×10 ⁴ X/X ₀	n. total (incl. guard)	141,120				
wire PCB, spacers,			gas + wires [6	600 mm]				
instrumented wire cage	cables, limiting R,	0.833 g/cm ² – 3.0×10 ⁻² X/X ₀	90%He – 10%iC ₄ H ₁₀	4.6×104				
	signal cables		W- 5AI → TI + 5 C	(13.1 -> 2.5)=10				
Orsay, Worksho	p on tau-charm factory	22		Dec. 6, 2018				

