F-DIRC for SCT

Michael Düren, Avetik Hayrapetyan, Mustafa Schmidt

JLU Giessen

August 25, 2020

Motivation

- Short status update for DIRC development at Giessen
- Introduction: Self-written software for ray-tracing and simplified Monte-Carlo simulations
- Results of systematic resolution studies: angle straggling, dispersion, geometrical errors etc

Detector

- Onion shell: Vertex detector, Drift chamber, RICH/DIRC, Calorimeter, Solenoid
- PID including barrel and endcap part (green)
- Distance to IP: 1,100 mm
- Inner radius: 200 mm
- Outer radius: 800 mm
- Polar angle range: $10^{\circ} \dots 40^{\circ}$
- Momentum range: 0.5...1.5 GeV/c
- ${\, \bullet \,}$ Separation of μ^{\pm} and π^{\pm}

Figure: SCT Detector

Required Resolution

Required Detector Resolution

Figure: Required detector resolution

< D > < A > < B > < B >

Online Framework

≡	Co Constant Consta	dt/Simulation / invite & invite &	run 🕨 share 🖆 📿 import repo 🕂 new rep
D	Files 🞝 🗂 🗄	main.py 🖻 🕤 saved	https://Simulation.mustafaschmidt.repl.run
~C	 main.py cherenkov.pdf 	1 # Description: Fast DIRC Simulations 2 # Author: Mustafa Schmidt 3 # Date: 13.04.2020 4	42 48 Q 48 392 42 49 10 7
Û	Cherenkov.png	5 import simdirc 6 import constants	43 44 392
⊳I	👳 constants.py	7 8 d = 2 #Radiator thickness in cm	43 45 392 43 46
	🗅 dist.pdf	9 wlen_min = 200 //Minimum wavelength in nanometer	392 43 47
¢	🗅 dist.png	<pre>10 Ween_max = 900 #Maximum wavelength in hanometer 11 mass = [0.1056583755, 0.13957018]</pre>	392 43 48
	C rindex.pdf	<pre>12 mom = [0.5, 1, 1.5] 13 eff = 0.05 #Probability of photon detection</pre>	392 43 49
	D rindex.png	14 15 #Sellmeier coefficients	392 44 45 302
	🔷 simdirc.py	16	44 46 392
	trapping.pdf	1/ parts = ["rused sitta", (8.4/3115391, 0.631038719, 0.906404498, 0.012995717,	44 47 392
	trapping.png	(Generic)	44 48 392
	🗅 wavelength.pdf	<pre>18 parfk51a = ['FK51A (Schott)',[0.971247817, 0.21690141, 0.904651666, 0.00472301995,</pre>	44 49 392 45 46
	🗅 wavelength.png	0.0153575612, 168.68133]] #FK51A (Schott)	392 45 47
	I wlenphotons.pdf	<pre>20 mysim = simdirc.Simulation() 21</pre>	392 45 48
	🗅 wlenphotons.png	<pre>22 mysim.nevents = 1</pre>	392 45 49
	wlenres.pdf	<pre>23 mysim.thetap = 5 24 mysim.par = parfs</pre>	392 46 47
	🗅 wlenres.png	<pre>25 26 mvsim.plotrindex()</pre>	392 46 48 392
	🗅 wlenscan.txt	27 28 mvsim.plotcherenkov()	46 49 392
	🗅 wlenspr.pdf	29 30 mysim.distribution()	4/ 48 392 47 49
	🗅 wlenspr.png	31	392 ?

Figure: Python code for simplified Monte-Carlo studies.

₫▶ ◀

Raytracer

Self-written ray-tracer for optical calculations

Figure: Light rays through an spherical object

• Cherenkov angle:

$$\theta_{c} = \arccos\left(\frac{1}{n\beta}\right) \quad (1)$$

Internal reflection:

$$\theta_r = \arcsin\left(\frac{1}{n}\right) \qquad (2)$$

Required Condition:

$$\theta_c + \theta_p > \theta_r \qquad (3)$$

- θ_p : Polar angle of particle
- Refractive index as function of momentum and angle

Mustafa Schmidt

F-DIRC for SCT

Time of Propagation

 Distance between intersection and FEL:

$$s_0 = R - d \tan \theta_p$$
 (4)

• Optical photon path:

$$s = \frac{s_0}{\cos\varphi} \qquad (5)$$

with $\varphi = \pi/2 - (\theta_p + \theta_c)$

• Required TOP Resolution:

$$t = \frac{1}{n} \left| \frac{s_{\mu,\pi}}{v} - \frac{s_{\pi,K}}{v} \right| \quad (6)$$

Not feasible!

$$\begin{array}{c} 4.0 \\ 3.5 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 5 \\ 2.0 \\ 1.5 \\ 5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0$$

Resolution Studies

Square sum of all individual errors equals the overall detector resolution:

$$\sigma_{\theta_c}^2 = \frac{\sigma_{\text{geom}}^2 + \sigma_{\text{sens}}^2 + \sigma_{\text{opt}}^2 + \sigma_{\text{disp}}^2}{N} + \sigma_{\text{track}}^2 + \sigma_{\text{strag}}^2$$
(7)

- σ_{geom} : Error resulting from width of FELs
- σ_{sens} : Error from finite pixel width
- σ_{opt} : Optical errors from mirror
- σ_{disp} : Error from chromatic dispersion
- σ_{track} : Tracking resolution of charged particle
- σ_{strag} : Angle straggling of charged particle in radiator

Photon Losses

Possibilities of photon losses:

- Untrapped photons ε_{trap} (ca. 30%)
- Sensor losses ε_{pde} (ca. 90%)
- Optical losses ε_{opt} (ca. 10%)
- Ineffective area between bars ε_{geom} (ca. 20%)
- Propagation losses such as diffraction, scattering, and absorption $\varepsilon_{\rm prop}$ (ca. 5%)

Photon loss studies:

- $\bullet\,$ Created photons: $\mathit{N}_{tot}\approx1000$ per event
- Remaining photons:

$$N = \varepsilon_{\text{trap}} \cdot \varepsilon_{\text{pde}} \cdot \varepsilon_{\text{geom}} \cdot \varepsilon_{\text{prop}} \cdot \varepsilon_{\text{opt}} \cdot N_{\text{tot}} \approx 20 \dots 60$$
(8)

Photon Trapping

- Trapping fraction depending on particle momentum and direction
- Photon direction: rotation around x axis by polar angle θ_p of particle

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{p} & -\sin \theta_{p} \\ 0 & \sin \theta_{p} & \cos \theta_{p} \end{pmatrix} \cdot \begin{pmatrix} \sin \theta_{c} \cos \phi \\ \sin \theta_{c} \sin \phi \\ \cos \theta_{c} \end{pmatrix}$$

 Calculating intersection with horizontal plane and fraction of two areas

Angle Straggling

Calculation of angular smearing

$$\sigma_{\theta} = \frac{13.6 \,\mathrm{MeV}}{\beta c p} z \sqrt{\frac{x}{X_0}} \left(1 + 0.038 \,\mathrm{ln}\left(\frac{x}{X_0}\right) \right) \tag{9}$$

• Scattering after thickness Δx

$$\Delta \sigma_{\theta} = \frac{d\sigma_{\theta}}{dx} \Delta x \tag{10}$$

• Normal distribution for every step Δx :

$$\theta' = \frac{1}{\sqrt{2\pi\sigma_{\theta}^2}} \exp\left(-\frac{\theta^2}{\sigma_{\theta}^2}\right)$$
(11)

- Averaging start and end point (before and after DIRC)
- Difference between angle at each scattering step
- Calculating RMS for all data points

Angle Straggling

Figure: Angle straggling without and with additional tracking behind detector.

 \Rightarrow Additional tracking behind DIRC detectors required!

Dispersion Effect

Detector Resolution (Dispersion)

Detector Resolution

Figure: Detector Resolution for fused silica and pions.

Detector Resolution (Dispersion)

Simulated detector resolution for different materials:

Fused Silica

FK51A (Schott)

Dispersion Correction

• Using Snell's law for calculating incoming and outgoing photon

$$n_1(\lambda)\sin\alpha = n_2(\lambda)\sin\beta \tag{12}$$

Only 2d case taken into account

Dispersion Correction

글 🛌 😑

Dispersion Correction

Single Photon Resolution (Angle Scan)

Figure: Single photon resolution as a function of the particle polar angle

Detector Resolution (Bar Width)

Figure: Detector Resolution resolution as a function of the bar width

Sensor Size Scan

Figure: Sensor width scan with adapting mirror radius

Pixel Scan

Mustafa Schmidt

F-DIRC for SCT

Conclusion & Outlook

- Small resolution of $\leq 1 \, \text{mrad}$ challenging but not impossible
- Dispersion: major influence on resolution \Rightarrow correction or optimization in sensor required
- Systematic error dominated by angle straggling: additional tracking with high resolution behind DIRC compulsory
- Optical resolutions in right order of magnitude
- Next step: Inserting all results in Geant4 and optimizing parameters