

K-long and muon system for the Belle II experiment

Timofey Uglov (MIPT and LPI RAS)

Outline

- From Belle to Belle2
 - Belle: RPC option for KL/muon system
 - Belle2: Scintillator option for KL/muon system
- Production, assembly and tests
- Calibration
- Conclusion

NIM **A 789**, 134–142 (2015)

B-factory motivation

 1964, Cronin, Fitch: Discovery of CP violation in K^o system, small effect O(10⁻³)

- > 1972, Kobayashi, Maskawa:
 - CP violation possible, if there are 6 quark flavors

- ✓ 1974, Burton, Richter: Discovery of charm quark
- ✓ 1977, E288: Discovery of bottom quark
- ✓ 1995, CDF, D0: Discovery of top quark
 - → CP violation?

Belle achievements

New charmonium-like states: X, Y, Z ...

Heavy hadrons spectroscopy

KEKb accelerator

26 Feb – 3 Mar 2017 INSTR-17 Novosibirsk, Russia

Muon system for Belle II T.U

The Belle detector

Belle: Resistive Plate Chambers

T.Uglov (MIPT/LPI)

SuperKEKb luminosity plans

26 Feb – 3 Mar 2017 INSTR-17 Novosibirsk, Russia

Muon system for Belle II

The Belle2 detector

26 Feb – 3 Mar 2017 INSTR-17 Novosibirsk, Russia

Muon system for Belle II

RPC efficiency for Belle2

	Moderate		Higher Iuminosity	High backg	ner round	La dea	arger ad time	Lower efficiency
Belle2 TDR	Layer	I	Barrel	Endcap forward			Endcap backward	
		KEKB	SuperKEKB	KEKB	SuperKEKB		KEKB SuperKEKB	
	0	0.91	0.70	0.91	0.0		0.90	0.0
	1	0.94	0.81	0.93	0.0		0.90	0.0
	2	0.96	0.87	0.94	0.0		0.90	0.0
	3	0.98	0.91	0.94	0.0		0.90	0.0
	4	0.98	0.94	0.94	0.0		0.89	0.0
	5	0.99	0.95	0.92	0.0		0.88	0.0
	6	0.99	0.95	0.93	0.0		0.89	0.0
	7	0.99	0.96	0.92	0.0		0.87	0.0
	8	0.99	0.94	0.92	0.0		0.86	0.0
	9	0.99	0.96	0.90	0.0		0.85	0.0
	10	0.99	0.98	0.87	0.0		0.82	0.0
	11	0.99	0.97	0.82	0.0		0.80	0.0
	12	0.99	0.96	0.78	0.0		0.81	0.0
	13	0.99	0.97	0.77	0.0		0.76	0.0
	14	9.99	0.96	N/A	N/A			N/A
Cceptable RPC efficiency measured in KEKB and extrapolated to SuperKEKB.								

T.Uglov (MIPT/LPI)

Scintillator option for KLM

Requirements for a new KLM system designed for operation at SuperKEKb luminosity:

- Low dead time: << μ sec for a typical channel (strip) area 1000 cm²
- Large geometrical acceptance: > 95%
- High detection efficiency: ~99% for MIP
- Low bg (neutron bg + electronic noise)

Solution

• REPLACEMENT OF ALL ENDCAP AND 2 INNERMOST BARREL LAYERS

- Scintillator based detector with WLS readout
- Fast photodector: Si photo diode in Geiger mode (SiPM Hamamatsu MPPC)
- Independent operation of x-y layers

Scintillator - WLS - SiPM

Muon system for Belle II

Scintillator strip production

filling the strip groove with optical gel from the top with moving carriage

gel pump

Scintillator strip lightyield

the longest strip 2.8 m; the shortest 0.6 m

Barrel

Layer assemble

15 strips are glued to polystyrene substrate (1.5mm, both sides)

26 Feb – 3 Mar 2017 **INSTR-17** Novosibirsk, Russia Muon system for Belle II

T.Uglov (MIPT/LPI)

Modules assemble and installation

Assembled module before closing the cover

Installation gaps in the magnet flux return

NIM **A 789**, 134–142 (2015)

Module installation

26 Feb – 3 Mar 2017 **INSTR-17** Novosibirsk, Russia Muon system for Belle II

T.Uglov (MIPT/LPI)

Cosmic tracks with RPC

26 Feb – 3 Mar 2017 INSTR-17 Novosibirsk, Russia

Muon system for Belle II

Calibration with SiPM noise

SiPM noise is linear in log scale, as rate for

 $N_{Photoelectrons} \sim (xtalk)^{(N-1)}$

Cross talk (xtalk~ 0.1-0.2) is due to after pulses, when photons from Geiger discharge in one jim pixel hit the neighboring pixels at SiPM. Use SIPM noise spectrum for SiPM calibration and optimal HV tuning: photoelectron peaks are well seen as steps in rate vs threshold distributions.

26 Feb – 3 Mar 2017 INSTR-17 Novosibirsk, Russia

Muon system for Belle II

Conclusion

- RPC-based KLM system worked fine in the Belle environment, but its efficiency vanishes in SuperKEKb conditions
- New endcap KLM system for Belle2 is based on the mixed technique: scintillator+WLS+SiPM for endcaps and 2 innermost barrel layers, RPC for other
- Good time resolution, tiny dead time and ability to measure signal amplitudes allows to cope with higher background and be efficient in new conditions
- All components of the system were successfully produced, tested and installed to the Belle 2 detector
- Developing of the calibration, slow control etc software and its integration to the Belle 2 DAQ is under way
- See cosmic muons in standalone mode
- New KLM system for Belle2 will be ready 2017 fall.

Backup

Radiation hardness

SiPM: Irradiation at a dose equivalent to 10 years of Belle2 operation

Strips, fibers, glue etc do not degrade at estimated radiation dose