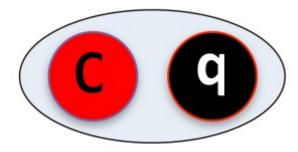
Спектроскопия очарованных мезонов и барионов



A.Kuzmin BINP/NSU

BINP 2017, December 19

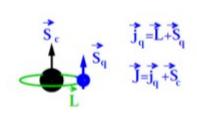
Open charm spectroscopy

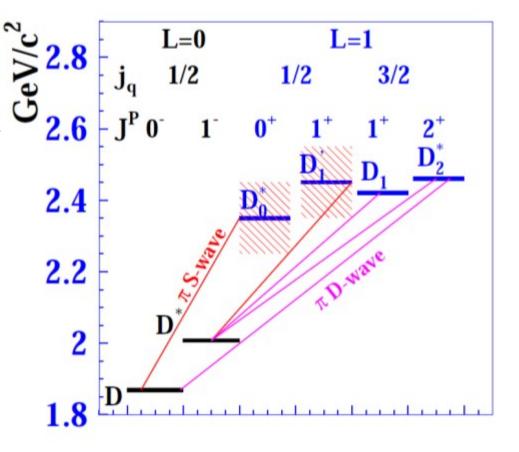
-Heavy and light quark system – strong interacting «atom»

-Can be described in different models: HQET, relativized quark model etc.

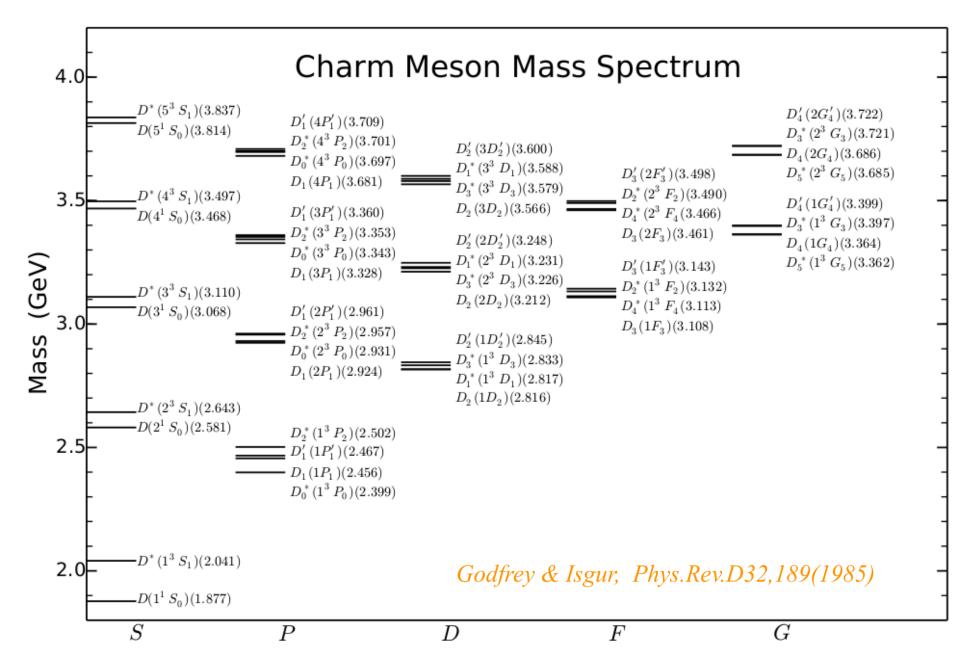
What can be studied

- -Spectroscopy
- -Production cross section, formfactors
- -Decay modes
- -Fragmentation study

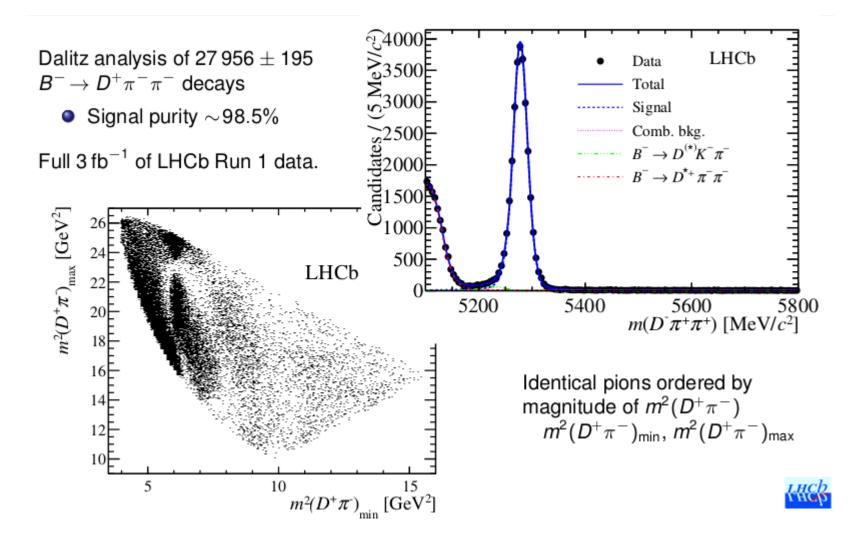

Excited states

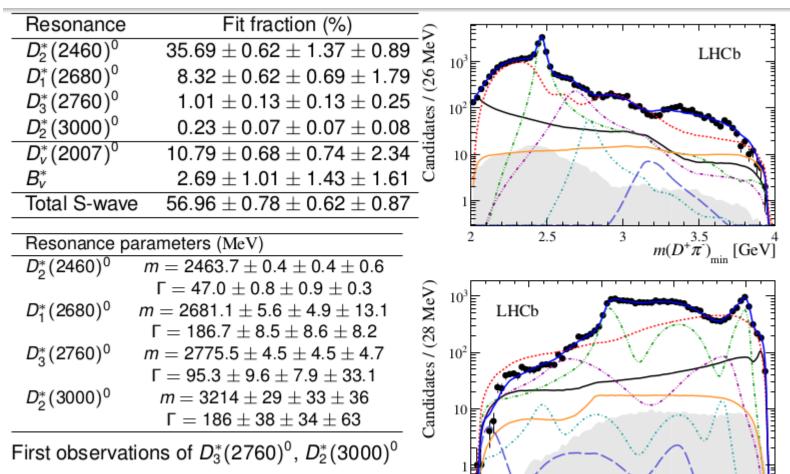

-In infinite heavy quark mass limit meson property is characterized by light quark wave function

«good» quantum numbers


 J_q – light quark total momentum J – total momentum of meson

For finite mass of c-quark observed states is quantum mixture of states


Predicted excited stetes

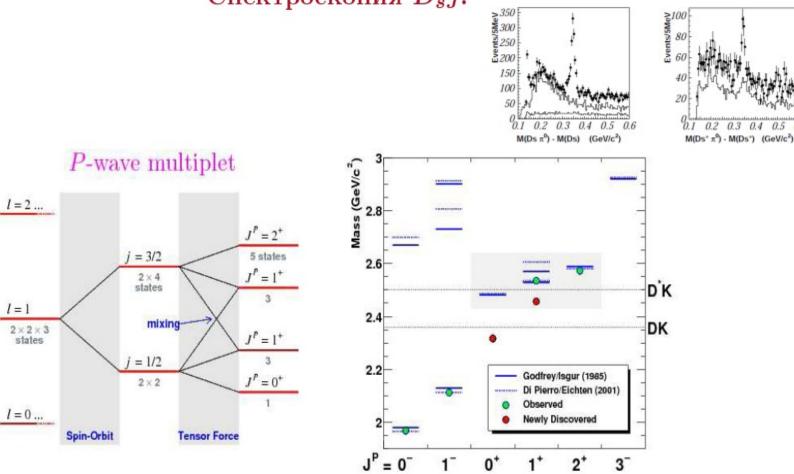

Recently observed excited stetes

State	J^P	Observed Decays	Mass (MeV)	Width (MeV)	References
$D_J(2550)^0$	0^{-}	$D^{*+}\pi^{-}$	$2539.4 \pm 4.5 \pm 6.8$	$130\pm12\pm13$	BaBar 2
$D_J(2580)^0$		$D^{*+}\pi^-$	$2579.5 \pm 3.4 \pm 3.5$	$177.5 \pm 17.8 \pm 46.0$	LHCb 11
$D_J^*(2600)^0$		$D^+\pi^-$	$2608.7 \pm 2.4 \pm 2.5$	$93 \pm 6 \pm 13$	BaBar 2
				$\Gamma(\to D^+\pi^-)/\Gamma(\to D^{*+}\pi^-) = 0.32 \pm 0.02 \pm 0.09$	BaBar 2
$D_J^*(2650)^0$		$D^{*+}\pi^-$	$2649.2 \pm 3.5 \pm 3.5$	$140.2 \pm 17.1 \pm 18.6$	LHCb 11
$D_J(2750)^0$		$D^{*+}\pi^{-}$	$2752.4 \pm 1.7 \pm 2.7$	$71 \pm 6 \pm 11$	BaBar 2
$D_J(2740)^0$		$D^{*+}\pi^-$	$2737.0 \pm 3.5 \pm 11.2$	$73.2 \pm 13.4 \pm 25.0$	LHCb 11
$D_J^*(2760)^0$		$D^{*+}\pi^-$	$2761.1 \pm 5.1 \pm 6.5$	$74.4 \pm 3.4 \pm 37.0$	LHCb 11
		$D^+\pi^-$	$2760.1 \pm 1.1 \pm 3.7$	$74.4 \pm 3.4 \pm 19.1$	LHCb 11
		$D^+\pi^-$	$2763.3 \pm 2.3 \pm 2.3$	$60.9 \pm 5.1 \pm 3.6$	BaBar 2
				$\Gamma(\to D^+\pi^-)/\Gamma(\to D^{*+}\pi^-) = 0.42 \pm 0.05 \pm 0.11$	BaBar 2
$D_J^*(2760)^+$		$D^{0}\pi^{+}$	$2771.7 \pm 1.7 \pm 3.8$	$66.7 \pm 6.6 \pm 10.5$	LHCb 11
$D_1^*(2760)^0$	1^{-}	$D^+\pi^-$	$2781 \pm 18 \pm 11 \pm 6$	$177 \pm 32 \pm 20 \pm 7$	LHCb 9
$D_3^*(2760)^-$	3^{-}	$\bar{D}^0 \pi^-$	$2798\pm7\pm1\pm7$	$105 \pm 18 \pm 6 \pm 23$	LHCb 10 ^a
$D_J(3000)^0$		$D^{*+}\pi^{-}$	2971.8 ± 8.7	188.1 ± 44.8	LHCb 11
$D_J^*(3000)^0$		$D^+\pi^-$	3008.1 ± 4.0	110.5 ± 11.5	LHCb 11

 $B^ightarrow D^+\pi^-\pi^-$

 $B^-
ightarrow D^+ \pi^- \pi^-$

3.5

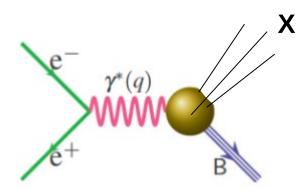

 $m(D^{+}\pi^{-})_{max}$ [GeV]

Parameters of D₃^{*}(2760)⁰ with D_J^{*}(2760) observed in inclusive analysis.

Спектроскопия D_{sJ} .

 $D_{s0}^{*+}(2317) \rightarrow D_s^+ \pi^0$ $D_{s1}^+(2460) \rightarrow D_s^{+*} \pi^0$

0.5 0.6

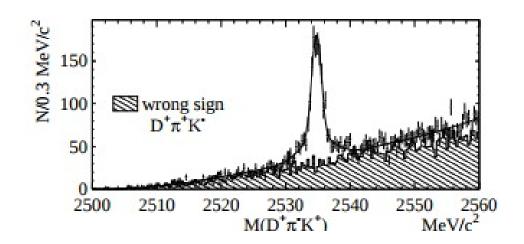


Figures: Courtesy of David Williams

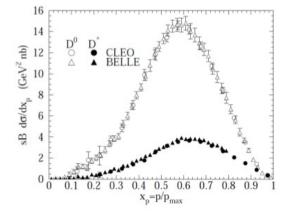
Ожидалось что состояния j = 1/2 имеют массу $M > M_{D^{(*)}} + M_K$ и большую ширину.(220 MeV)

Production

-Inclusive production

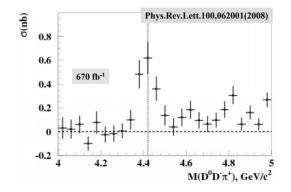


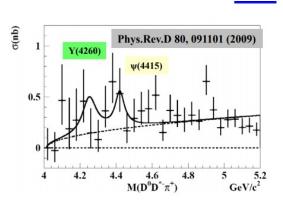
-Production and study of exclusive states $DD\pi$, $D^*D\pi$, $D^*D^*\pi$, D_s^K ...


Inclusive production

-Larger statistic

-study of spectroscopy and decay of narrow states


-study of fragmentation and polarization of produced states

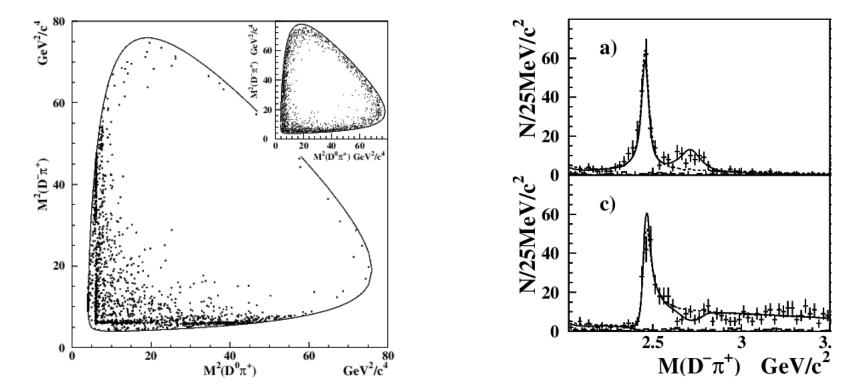

Exclusive states production

Cross section of $e^+e^- \rightarrow D^0 D^{*-}\pi^+$

 For 1 ab⁻¹

 DDπ
 6x10⁸

 D*Dπ
 6.5x10⁸

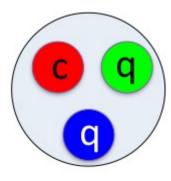

2x10⁶ 10⁶

Exclusive states production

 $e^+e^- \rightarrow D^0D^-\pi^+$, $D^+D^-\pi^0$, $D^0D^0\pi^0$

-Coherent state: 2 Dalitz variables+ θ , ψ

Preliminary results of Belle 0.67 ab⁻¹


What to study at $c\tau$ factory

-D** spectroscopy – hard competition with B-factory and LHCb

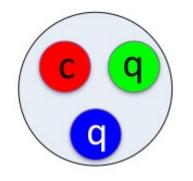
-Study of decay modes with π^0 , γ (advantage against LHCb)

-Detailed study of exclusive $D(*)D(*)\pi$ modes

-Fragmentation, formfactors...

Charm barions

$$\begin{split} \Lambda_c^+ &= udc, \quad \Sigma_c^{++} = uuc, \quad \Sigma_c^+ = udc, \quad \Sigma_c^0 = ddc, \\ \Xi_c^+ &= usc, \quad \Xi_c^0 = dsc, \quad \Omega_c^0 = ssc \end{split}$$

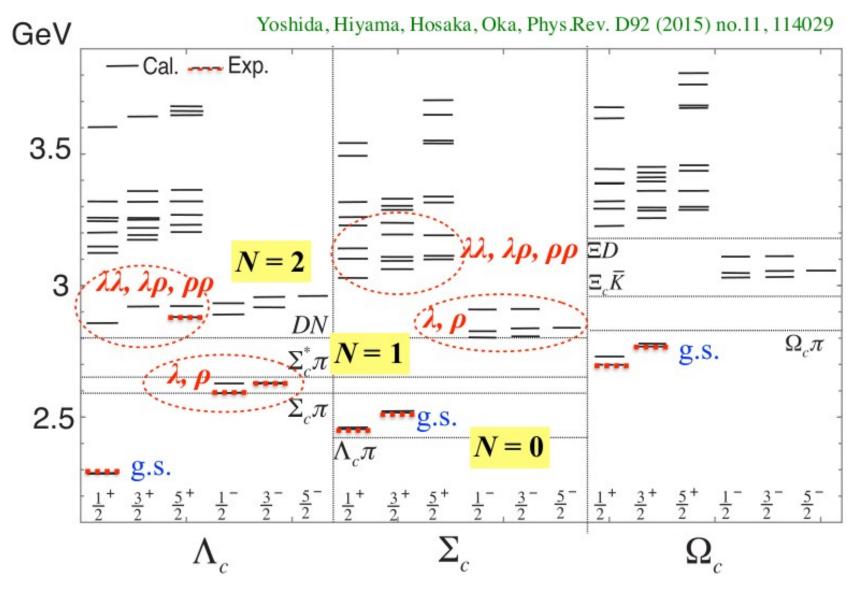

3 spin-1/2 QF-assymetric states (Λ_{c}^{+} , $\Xi_{c}^{+,0}$, $\Xi_{c'}^{+,0}$, Ω_{c}^{0}), 6 spin-1/2 QF-symmetric states ($\Sigma_{c}^{++,+,0}$, $\Xi_{c'}^{+,0}$, Ω_{c}^{0}), 6 spin-3/2 symmetric states ($\Sigma^{*++,+,0}_{c}$, $\Xi_{c'}^{*+,0}$, Ω_{c}) All 15 states were observed. There are 63 P-vawe exitations.


Double charm barions:

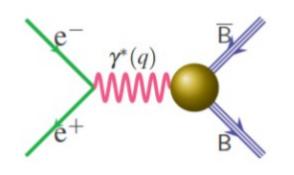
3 spin
$$\frac{1}{2} \Xi^{+,++}_{cc,} \Omega^{+}_{cc}$$

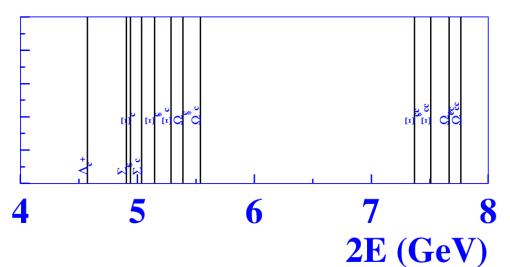
Triple charm Ω*⁺⁺_{co}

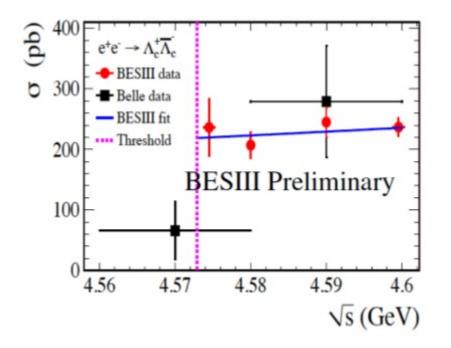
Charm barions

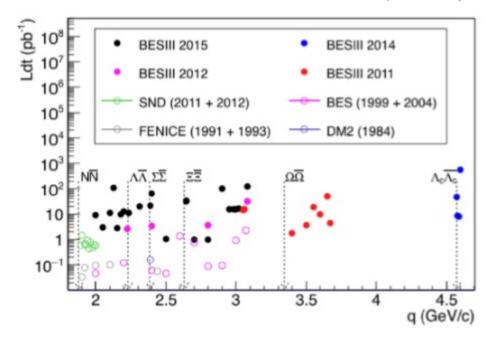

Charm barion spectroscopy Quark Model Calculations

Yoshida, Hiyama, Hosaka, Oka, Phys.Rev. D92 (2015) no.11, 114029

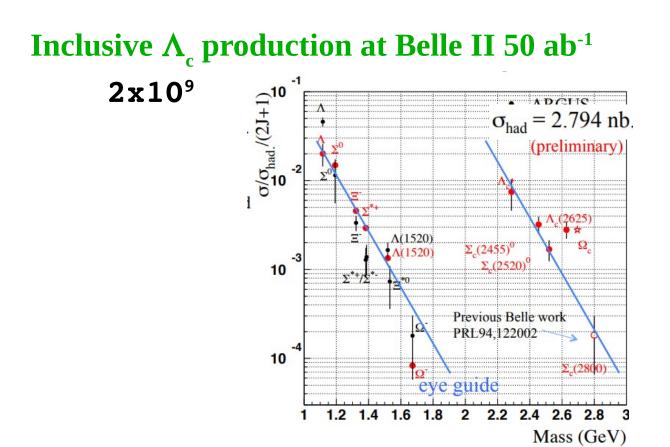

$$\begin{split} H &= \frac{p_1^2}{2m_q} + \frac{p_2^2}{2m_q} + \frac{p_3^2}{2M_Q} - \frac{P^2}{2M_{tot}} \\ &+ V_{conf}(HO) + V_{spin-spin}(Color - magnetic) + \dots \end{split}$$


Wave function: (**Brown muck**) × (Charm quark) $J = \underbrace{j}_{\text{Brown muck}} + \underbrace{\frac{1}{2}}_{\text{Charm quark}} = \underbrace{j \pm \frac{1}{2}}_{\text{HQ(LS) doublet}}$ $\Lambda_c(J^-; \lambda) = \left[\psi_1(\lambda) \psi_0(\rho), d^0 \right], \chi_c \right]^{J = \frac{1}{2}, \frac{3}{2}} D^0 c,$


Charm barion spectroscopy



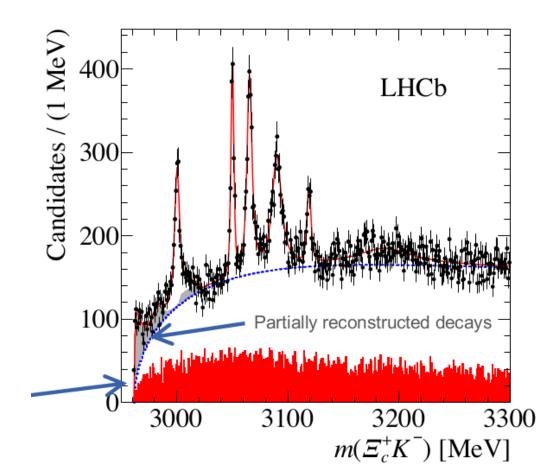
Charm barions formfactors



$$e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$$

For 1 ab⁻¹ at threshold

2x10⁸



• LHCb study the $\Xi_c^+ K^-$ invariant mass spectrum $m(\Xi_c^+ K^-) = m([pK^- \pi^+]_{\Xi_c^+} K^-) - m([pK^- \pi^+]_{\Xi_c^+}) + m_{\Xi_c^+}$

LHCb-PAPER-2017-002

• Ξ_c^+ candidates reconstructed in the $pK^-\pi^+$ final state • $3.3 fb^{-1}$ data sample (Run 1 + 2015)

LHCb has huge power to study charm barions

What to study at $c\tau$ factory

- -Spectroscopy of charm barions hard competition with B-factory and LHCb
- -Decay modes with π^0 advantage against LHCb
- -Production crossection and probability of charmonium decay

-Formfactors study (higher energy is desirable)

Summary

-Open charm physics has many interesting topics to study

-Even after work of LHCb and Belle II charm factory has many interesting tasks:

-study of cross section of charm hadrons production
-study of the charmonia decays to open charm hadrons
-study of barions formfactor
-detailed study of exclusive D(*)D(*)π modes

Backup slides