
 Deliverable no. D5.1

Page 1 of 12

Project information
Project full title Connecting Russian and European Measures for Large-scale

Research Infrastructures – plus

Project acronym CREMLINplus

Grant agreement no. 871072

Instrument Research and Innovation Action (RIA)

Duration 01/02/2020 – 31/01/2024

Website www.cremlinplus.eu

Deliverable information
Deliverable no. D5.1 (D44)

Deliverable title Status report on the software for the SCT detector

Deliverable responsible CERN

Related Work-
Package/Task

WP5; task 5.3

Type (e.g. Report; other) Report

Author(s) Andrey Sukharev, Placido Fernandez Declara, Vitaly Vorobyev,
Andre Sailer

Dissemination level Public

Document Version 1

Date 31 Jul 2021

Download page www.cremlinplus.eu

Document information
Version no. Date Author(s) Comment

1 18/07/2021 A. Sukharev, P. Fernandez Declara First draft

2 19/07/2021 V. Vorobyev Generation and Analysis
modules

3 21/07/2021 Andre Sailer Sec. 3 improved

Table of Contents
1. Introduction

2. The SCT software

3. Inter-operation with Key4hep & iLCSoftware

4. Conclusion

 Deliverable no. D5.1

Page 2 of 12

1. Introduction
A well-defined software stack is an essential component of any High Energy Physics (HEP)

experiment. Such a stack (usually referred to as the software framework) should provide means to

perform all conventional data handling steps (Fig. 1): Monte Carlo generation of signal and

background events, simulation of the detector response, reconstruction for both simulated and

recorded experimental events, final physical analysis, etc. The Super Charm-Tau (SCT) factory

detector team in the Budker Institute of Nuclear Physics is building a software stack that should

cover these tasks, the Aurora framework. The Aurora framework is going to use as much as possible

of the existing HEP software, either directly relying on the general-purpose projects like Gaudi,

Geant4, ROOT, and Key4hep, or porting and re-using relevant components from other experiments,

for instance, general Aurora structure and build system is inspired by Athena of ATLAS, lots of

framework components were taken from the FCC software, many analysis tools were adopted from

the Belle2 experiment.

Fig. 1. Main data flows and operations in the detector software.

The software framework is a critical component of the detector project from its very early stages. It

should allow physicists to evaluate various options of the detector subsystems and to estimate the

resulting detector performance thus outlining the possible physics programme. On the other hand,

not all the components shown above are mandatory at the detector design stage, but they must be

kept in mind to make further framework development easier.

2. The SCT software
The SCT detector software framework named Aurora is based on the de-facto HEP standard

framework Gaudi. Aurora covers all the aspects of software components interaction at run time,

including configuration, data exchange and job running.

 Deliverable no. D5.1

Page 3 of 12

The Aurora framework architecture follows the traditional scheme: it separates code and data.

Physics data are processed by Algorithms on an event-by-event basis. An algorithm takes input data,

manipulates it, and produces new output data. Some parts of this work may be delegated to Tools.

The framework provides data stores for data exchange between algorithms. Tools and algorithms are

implemented with the C++ programming language. The Python programming language is used for

configuration and steering scripts.

The software is organized in packages, or modules, each module is responsible for a set of well-

defined tasks. General-purpose, control, service, example and other modules are developed by the

software team, while the modules dealing with a certain detector subsystem and with specific

physics tasks (like event generation and physics analysis) are expected to be prepared by the

corresponding experts. The required set of “external” software (compilers, unmodified standard HEP

software libraries and their dependencies) and the build system are also maintained by the software

team.

The data flow in the processing chain is typical. Events are generated by the chosen generator, then

injected into the simulation. The simulation could be either parameterized or full. Full simulation

tracks all the particles in the digital model of the detector, yielding the event picture. Then the

picture is processed with digitization modules, their output data format is exactly the same as it

would be for the real detector hardware. Thus, the reconstruction could operate with either

simulated or real data in the future. Reconstructed events are analyzed using the corresponding

high-level tools. The parameterized simulation does not feature the detailed description of the

detector and just directly converts initially generated particles to the format usable for high-level

analysis, the conversion uses the detector parameters like momentum and energy resolution as pre-

defined data.

On each stage of the data processing chain the intermediate data could be routed directly from one

module to another or stored and read back later.

2.1. Event generators

Interaction of electrons and positrons in the SCT beam collision region leads to production of various

particles, most of which have many decay channels. The processes of particles production and decays

are simulated with a dedicated software called event generators. The Generation package contains

algorithms for event generation.

A GenAlg algorithm is executed for event generation. It defines unified interfaces for all high-level

event generators in Aurora. A IHepMCProviderTool interface must be implemented for each high-

level event generator. The method getNextEvent of this interface fills a HepMC3 object. Therefore, at

the low level, all SCT event generators produce events in the HepMC3 format, that is the de-facto

standard in high energy physics. Besides, GenAlg has interfaces for vertex smearing and events

merging tools.

https://gitlab.cern.ch/hepmc/HepMC3

 Deliverable no. D5.1

Page 4 of 12

The SCT software adopted an event data model based on plain-old-data (POD) objects just as

suggested by the Key4hep initiative. A HepMC3 object is not a POD, that is why a HepMC3 to SCT

event data model (EDM) converter HepMCToEDMConverter is implemented and is called after the

GenAlg. Events in the SCT EDM can be serialized/deserialized or transferred online to the next

simulation step.

The SCT EDM is implemented with the PODIO package. The EDM4Hep package, a candidate for the

standard EDM by Key4Hep is based on PODIO. That makes natural the planned transition of the SCT

EDM to EDM4Hep.

The EvtGen is the main high-level event generator in Aurora. It contains many features that cover

significant part of the SCT experiment needs:

• Extendable list of particles and its properties.

• Extendable list of decays of charmed hadrons and tau lepton that reflect current knowledge

of these particles.

• Simple user interface to specify processes to generate.

• Convenient developer interface to define new decay amplitudes (together with a large list of

high-quality predefined decay amplitudes).

A more precise generator of tau lepton decays is Tauola. Tauola is included in Aurora and invoked

through EvtGen.

The effect of final-state-radiation is needed to be considered in precise studies. This effect is

simulated with the PHOTOS package also accessed through EvtGen.

There are many hadronic decays that are not described explicitly. A general generator of hadronic

decays Pythia helps in such cases. It also included in Aurora and is accessed through EvtGen.

The EvtGen – Tauola – Pythia – PHOTOS combination is the core stack of event generators available

in Aurora. It is suitable for generating general sets of events (“all possible processes for a given

beams energy”) as well as for generating a specific subset of “signal” processes.

Other generators will be added to Aurora when needed. The recommended way of adding new

generators is making new EvtGen models (although this is not always possible, e.g., for the two-

photon processes generation). That would provide a uniform user interface for all generators in the

system.

Several event generator configuration files are added to Aurora as examples to help new users

getting use with generator configuration.

https://github.com/AIDASoft/podio
https://evtgen.hepforge.org/

 Deliverable no. D5.1

Page 5 of 12

A high-level Python interface for event generators is implemented on top of the interface provided

by the framework. A user only needs to specify EvtGen as generator, and select the root particle,

configuration file and beam energies.

2.2. Detector subsystem geometry
A uniform detector geometry description should be provided for all software modules thus making

sure the same geometry is used at all stages of data processing. This is achieved using the DD4hep

toolkit. To describe the geometry, one must provide the XML files with general information and the

C++ code which interprets the XML data and builds corresponding objects. Later any module could

access the geometrical information via these objects. If a user needs to slightly adjust the geometry

changing the XML files only, this does not require to re-build the whole program.

Each detector subsystem has a corresponding geometry software package, containing the XML

description, the C++ code to interpret the XML, and some extra files like build rules and tests. If there

are several options for a subsystem, each option is represented by a separate package. The desired

variant is selected at run time, allowing to compare the options.

Each subsystem declares certain areas as the sensitive volumes to produce simulation output data

which will be used as input for digitization or reconstruction. A unified SensitiveDetector class allows

to do this automatically.

The list of geometry packages includes (developed by Budker INP software team and subsystem

experts unless explicitly specified):

1. The FinalFocusGeo and The BeamPipeGeo, representing the beam pipe and rather

complicated final focus magnets and cryostats, based on the technical sketches provided by

the collider team.

2. Three options for the Vertex Tracker: the TPCGeo – time-projection chamber, the

CmuRWELLGeo - cylindrical modular μ-RWELL detector being developed by the INFN group,

and the SiStripGeo – simple four-layered Silicon plates device with strip readout.

3. The Drift Chamber geometry package.

4. The FARICHGeo for the PID subsystem, with the upcoming FDIRC option from the JLU

Giessen/University of Giessen team.

5. The Calorimeter package describing both barrel and endcap crystal calorimeter, with a

special algorithm to calculate exact position and sizes for each crystal.

6. Simplified description of the superconducting magnet in the CoilGeo package. There is also

the ThinSolenoidGeo featuring the coil before the calorimeter, however this option is not

likely to be chosen.

7. The MuonSystemGeo, describing the muon system and the iron yoke of the magnet. There is

also the code to provide the magnetic field map.

 Deliverable no. D5.1

Page 6 of 12

The overview of detector geometry is shown in Fig. 2.

Fig. 2. The detector geometry.

2.3. Signal digitization
The data received from the (future) detector would most likely be organized as a set of pairs of

numbers [the ID of electronics channel activated in the event; the value measured by the channel].

On the other hand, the simulation output is generally a set of places in the detector where a particle

deposited some energy. The digitization is responsible to convert the simulation output to the real

detector data format thus allowing the reconstruction to work both with simulated and real data in a

uniform way. The conversion could be complicated, taking into account effects like electron drift, or

light absorption.

Ultimately, all detector subsystems should follow the scheme. This is, however, not the case yet, and

most subsystems perform reconstruction based on the simulated data directly, which is more or less

acceptable at the present stage of the project. The exception is the SiStripDigi module serving as an

example. For the Silicon Strip inner tracker option, the digitization procedure is rather simple: the

place where the energy is deposited in the tracker determines the electronics channel ID (actually

two channels activated for each deposition: longitudinal and transverse ones), while the “measured”

value is just the energy. The geometry is addressed via DD4hep objects instantiated by the

corresponding geometry package SiStripGeo. Various effects of charge collection are planned to be

addressed later.

Based on the example, some subsystem groups are already developing their digitization modules too.

2.3. Event reconstruction
The reconstruction is generally a two-stage procedure. Ideally, at the first stage the information

received from the simulation or (in future) from the detector is processed to obtain from raw event

 Deliverable no. D5.1

Page 7 of 12

data – the channel IDs and their readouts – the meaningful physical information. This could be,

depending on the subsystem, spacial coordinates and times of a particle flight, energies deposited in

certain parts of the detector etc. The second stage combines these data to form high-level

reconstructed objects: tracks of charged particles with momenta in the vertex and main trackers,

total energy deposits associated with particles in the calorimeter, particle identification indicators

and so on. Finally, the reconstruction yields a set of final state particles with their properties to be

used as the input for the analysis.

The first-stage reconstruction is prepared for each subsystem by the experts and placed in a

corresponding module with -Rec suffix. Implemented at the moment are SiStripRec and

MuonSystemRec. The advanced RecCalorimeter module reconstructs clusters of energy deposits in

the calorimeter. Detector elements without sensitive volumes do not need reconstruction module.

The second stage reconstruction is implemented at the limited level. Lots of already developed

advanced algorithms have not been merged into the master code base yet:

1. The drift chamber track finding and fitting based on the GenFit library.

2. Another tracking solution described below in section 3.

3. FARICH reconstruction code.

2.4. Physics analysis

Physics analysis of events collected by the SCT experiment requires the application of many

algorithms and sophisticated techniques of statistical analysis. The first stage of almost any analysis –

selection of potentially interesting events – is well standardizable. An almost complete list of actions

needed at first stage is following:

• Accessing final-state-particles (FSPs) reconstructed in the detector.

• Combining FSPs in a tree structure to build candidates for decays of unstable intermediate

particles.

• Imposing requirements on selected particles (e.g., particle momentum or azimuth angle not

less than some value).

• Imposing kinematic assumption on a decay tree (e.g., forcing mass of intermediate particle to

a fixed value).

• Calculation of various parameters for a particle candidate or for an event and saving it for

further analysis.

The high-level interfaces for the listed actions (and some other that are omitted for the sake of

simplicity) are implemented in the Analysis package of Aurora. This package is inspired by Belle II

software, and we express gratitude to the Belle II collaboration for sharing source code with SCT

team. Nevertheless, direct use of Belle II software is not possible since it uses BASFII framework

 Deliverable no. D5.1

Page 8 of 12

incompatible with Aurora and Gaudi, so most of the code was written from scratch or heavily

modified starting from the Belle II original code. All references to the original code are kept in the

header commentaries.

The Analysis module contains the following key components:

1. Particle class, that implements many tools needed for SCT data manipulation. Particle objects

are nodes in the reconstructed decay trees.

2. ParticleList class – a specialized container that is aware about antiparticle concept.

3. EventLoader – Aurora algorithm that accesses reconstructed FSPs and produces ParticleList

objects for further analysis within the Analysis package.

4. DecayDescriptor sub package describing user-friendly language of decays description. The

following are examples of correct expressions a user can use to in analysis:

a. D0 -> K- pi+

b. D0 -> [rho0 -> pi+ pi-] pi0

c. D0 -> [rho0 -> pi+ pi-] [rho+ -> pi+ [pi0 -> gamma gamma]]

(here D0, K-, pi+, pi-, pi0, rho0, rho+, and gamma are names of predefined particles).

5. ParticleCombiner algorithm generates candidates of decays of intermediate particles (e.g.,

for the D0 -> pi+ pi- decay, this algorithm loops over all pairs of positive and negative pi

mesons and created a D0 candidate for each pair). Consecutive application of the

ParticleCombiner algorithm is used to produce arbitrary decay trees.

6. AnaVarManager sub package is extendable library of predefined variables. A variable can be

calculated for a given Particle object (e.g., energy, transverse momentum). This package is

used when selection criteria are imposed on list of candidates and when a set of variables is

calculated to save an n-tuple for further analysis.

7. Kfit sub package implements kinematic fitters. Only mass-constrained fitter is implemented

at the moment. Implementing algorithms for other kinds of kinematic fitting is a subject of

improvement of the Analysis package.

8. NtupleAlg algorithm takes a list of reconstructed particle candidates and a list of variables to

calculate, calculates each variable for each particle and saves the result in a plain ROOT TTree

format – an n-tuple.

Fig. 3 shows a typical process of data manipulation within the Analysis package. It starts with access

to data in the SCT EDM format with EventLoader, continues with a user-defined set of algorithms,

and finishes with writing n-tuple with the NtupleAlg algorithm.

 Deliverable no. D5.1

Page 9 of 12

Fig. 3. Scheme of algorithms and data manipulation implemented in the Analysis package.

The Analysis package addresses the following issues:

1. It provides high-level instruments for the data analysis allowing fast learning for newcomers.

2. It minimizes time of writing analysis code.

3. It reduces number of code bugs since a physicist does not need to implement (and debug)

various standard algorithms.

4. It ensures reproducibility of the analysis since all algorithms are well-documented and

eventually will be well-tested.

5. It standardizes the output format of the analysis since structure of the output n-tuple is

generated automatically. This feature allows development of software for further

sophisticated analysis assuming the common format of input data.

The Analysis package is supposed to be used in the upcoming SCT physics case studies as well as in

analysis of the SCT experiment data.

2.5. Service tools
A set of service tools is available for the SCT software users. The visualization is provided by the

GeoDisplay and the EventDisplay tools based on DDEve from the DD4hep toolkit. The first one draws

the detector geometry in 3D, and it is robust enough, while the second one aiming to visualize the

event data still requires lots of improvements.

The geometry validation package includes tools to check the geometry description for inconsistencies

like overlapping volumes (both at the DD4Hep level and in the Geant4 simulation). There are also

geometry hierarchy printing and material scanning tools based on DD4Hep.

Using these tools, a geometry test mechanism is implemented. The tests should be prepared by a

developer for each geometry package, helping in the early detection of errors when modifying the

geometry.

 Deliverable no. D5.1

Page 10 of 12

The build system of the software stack is based on one from the ATLAS experiment. External

standard HEP packages are built using LCGCMake infrastructure. The software development

workflow utilizes GitLab as a version control and project management system.

3. Inter-operation with Key4hep & iLCSoftware
The characteristics of the Aurora framework are well aligned with the design and goals of the

Key4hep project. Key4hep aims to provide a “Turnkey software stack” with all the necessary

ingredients for future experiments. It receives contributions from FCC, CLIC, CEPC and ILD. Synergies

between these future experiments allows for the development of the common software stack that

includes the best software components from the HEP community. Key4hep is a good fit for SCT

software to benefit, contribute and reuse framework stack components being built for the already

mentioned large experiments. Like the Aurora framework, the Key4hep stack is based on Gaudi as

the underlying framework and DD4hep for the geometry information. The Key4hep EDM (EDM4hep)

is also based on PODIO but currently differs from the SCT-EDM.

The Key4hep project also encourages the use of common tools and software practices to improve on

the consistency, maintainability and resiliency of the source code used to build it. Templates are

provided to build new packages following common structures, common build systems are agreed

along with testing frameworks for the main languages used in Key4hep: C++ and Python. Consistent

source code practices are encouraged through tools like clang-tidy and clang-format. A common set

of packaging and distribution tools is set with Spack and CVMFS which are widely used.

The iLCSoft framework, among other things, contains tools for the simulation and reconstruction,

including pattern recognition and trackfitting, of a Time Projection Chamber (TPC). Other iLCSoft

components might also turn out to be of use for SCT as well. As a TPC is one of the possible options

for the SCT vertex detector using these components from iLCSoft, would allow one to avoid the re-

implementation of these tools in the Aurora framework. As part of the Key4hep project, the iLCSoft

components are in the process of being adapted to run with the Gaudi framework, instead of the

Marlin framework and LCIO EDM of iLCSoft. To bring this iLCSoft based simulation and reconstruction

software to Gaudi in a generic way, the component k4MarlinWrapper is developed. The

k4MarlinWrapper brings the necessary interfaces, adapters and converters to run Marlin processors

with Gaudi. Both frameworks use the same main programming language (C++), but different

configuration languages: XML vs. Python. A converter between the XML format used by Marlin to the

Python format used by Gaudi is developed and improved. It introduces new features to support the

concept of constants used in the XML, which enables the propagation of these constants through the

configuration file at run time. The optional Gaudi algorithms are left as commented or deactivated in

the conversion; it is up to the user to activate the specific Gaudi algorithms that are marked as

optional in the original XML file.

The EDM used by Marlin (LCIO) is not compatible with PODIO based EDMs like EDM4hep or the EDM

used by SCT. To interface between these EDMs a set of in-memory converters are developed for

k4MarlinWrapper: these enable EDM4hep to LCIO, and LCIO to EDM4hep conversion of user-

 Deliverable no. D5.1

Page 11 of 12

configured collections, and for user-configured algorithms. The conversion is done in-memory: no

intermediate files or persistent format is saved directly from these conversions. By implementing

these converters, the original source code of Marlin processors is kept intact thus ensuring the

correctness and robustness of its algorithms. Reading and writing events in both EDM formats is also

supported by k4MarlinWrapper, it provides mechanisms that allow to use LCIO or EDM4hep input

files to read events. To write out persistent events or collections, both the converters and

mechanisms for writing are provided for both LCIO and EDM4hep. While the LCIO based writer uses a

wrapped Marlin processor, a PODIO-based tool is used to write EDM4hep collections.

The current limitations for the integration of these tools are related to common standards and

version of some mentioned packages. SCT uses a PODIO based EDM, similar to EDM4hep but with

some differences that make it impossible to use the current converters. New converters or an

adaptation of SCT EDM to EDM4hep would be necessary to integrate. While both SCT and Key4hep

use the same underlying framework, Gaudi, different versions of it are used, with Key4hep following

the latest Gaudi version which introduces some breaking changes in the build system that make it

difficult to directly integrate Key4hep components into Aurora.

The geometry integration for the TPC to make simulations while benefiting from iLCSoft packages can

be done by adapting the geometry definitions. A geometry definition for the TPC and beampipe is

created for this purpose. This geometry is initially based on ILD’s definitions, but adapted to the

measurements and materials used in SCT. Missing constants, material definitions and components

are added to the materials mixture file. The geometry integration relies on the lcgeo package, which

is available to be used with Aurora, however the TPC sensitive detector needed to be used along with

the rest of the iLCSoft based reconstruction tools is not compatible with the Aurora geant4

simulation. A common standard of the underlying Geant4 is needed to integrate the components by

the use of “wrappers” that allow to instantiate them. To test the correct behaviour and definition of

these geometry files, DD4hep is used through ddsim and the reconstruction of tracks in the SCT TPC

was tested using the k4MarlinWrapper

The common ground of SCT and Key4hep allows for good integration of efforts and components. The

differences encountered with package versions and some implementation details present challenges

to be able to fully integrate. By solving these challenges, SCT and Key4hep could further integrate

and SCT could directly benefit from using all the battle-tested reconstruction and simulation

algorithms from iLCSoft through the modern framework developed by Key4hep for experiments like

FCC, CLIC or CEPC.

4. Conclusion
The SCT detector software development has advanced a lot since the beginning of the SCT project.

The Aurora release 1.0.1 available since June 2021 comprises the software set minimally required at

the present stage of the detector project, including:

1. primary event generators,

 Deliverable no. D5.1

Page 12 of 12

2. parameterized and full simulation,

3. detector geometry description (with at least basic description for all detector elements, and

several options for some subsystems),

4. sample digitization module,

5. reconstruction modules (from basic to really advanced, depending on subsystem),

6. analysis and job configuration tools,

7. test and service tools.

The development of new modules covering the yet missing functionalities, further Key4hep

integration, modernization of the core software components being used by the framework, build and

visualization systems improvements are the nearest goals for the SCT software team and the

detector experts.

