Статус и перспективы BES-III эксперимента

Нефедов Юрий (for the BES-III collaboration)

ОИЯИ Дубна

Рабочее совещание по физической программе Супер с-тау фабрики, Новосибирск 2017

Outline

- >Эксперимент и детектор BES3
- Наборы данных и физическая программа
- >Чармоний-подобные состояния:
 - Заряженные Zc состояния

BEPCII/BESIII в IHEP (Пекин)

Beijing Electron Positron Collider (BEPCII)

Детектор BES-III

NIM A614, 345(2010)

Super conducting magnet: 1 T

9 layers RPC, 8 for endcaps

The BES-III Collaboration

Набор данных на BES-III

Energy & physics	N or L	Comments
J/ψ at 3.097 GeV	1.3 x10 ⁹	2009+2012: 20 x BES-II
ψ(2S) at 3.686 GeV	0.5 x10 ⁹	2009+2012: 20 x CLEO-c
ψ(3770) at 3.773 GeV	2.9 fb ⁻¹	2010+2011: 3.5 x CLEO-c
ψ(4040) at 4.009 GeV	0.5 fb ⁻¹	2011
tau mass scan around 3.554 GeV	24 pb ⁻¹	2011
4.23 / 4.26 GeV 4.36 GeV 4.42 GeV	1.9 fb ⁻¹ 0.5 fb ⁻¹ 1.0 fb ⁻¹ 0.2 fb ⁻¹	2013+2014 Data used for analyzes
4.6 GeV xyz-scan: 3.81 – 4.42 GeV	0.2 fb 0.6 fb ⁻¹ ~50 pb ⁻¹	presented today 10 points
4.4774.55 GeV 4.6 GeV xyz-scan: 3.81 – 4.42 GeV 4.575 GeV at Λc threshold	0.2 fb 0.6 fb ⁻¹ ~50 pb ⁻¹ 48 pb ⁻¹	presented today10 points2014
4.4774.55 GeV 4.6 GeV xyz-scan: 3.81 – 4.42 GeV 4.575 GeV at Λc threshold R scan: 3.85 – 4.59 GeV	0.2 fb 0.6 fb ⁻¹ ~50 pb ⁻¹ 48 pb ⁻¹ ~0.8 fb ⁻¹	presented today10 points20142014 (104 points)
 4.4774.53 GeV 4.6 GeV xyz-scan: 3.81 – 4.42 GeV 4.575 GeV at Λc threshold R scan: 3.85 – 4.59 GeV R scan: 2.0 – 3.08 GeV + 2.175 GeV 	0.2 fb 0.6 fb ⁻¹ ~50 pb ⁻¹ 48 pb ⁻¹ ~0.8 fb ⁻¹ ~0.6 fb ⁻¹	presented today10 points20142014 (104 points)2015 (20 points)
 4.4774.55 GeV 4.6 GeV xyz-scan: 3.81 – 4.42 GeV 4.575 GeV at Λc threshold R scan: 3.85 – 4.59 GeV R scan: 2.0 – 3.08 GeV + 2.175 GeV 4.18 GeV (for Ds) 	0.2 fb 0.6 fb ⁻¹ ~50 pb ⁻¹ 48 pb ⁻¹ ~0.8 fb ⁻¹ ~0.6 fb ⁻¹ ~3 fb ⁻¹	presented today10 points20142014 (104 points)2015 (20 points)2016

Чармоний и XYZ – состояния

BES-III данные для изучения XYZ

~5fb⁻¹ данных в области энергий 3.8 – 4.6 GeV

Эначительная статистика для энергий 4.23/4.26/4.42 GeV

Большое количество точек со светимостью ~10pb⁻¹

Z_c – заряженные чармонийподобные мезоны

> BES-3: $e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp}$ (also check $\pi^0 Z_c^0$) $Z_c^{\pm} \rightarrow \pi^{\pm} (J/\Psi \text{ or } h_c \text{ or } \Psi' \text{ or } D^* D^{(*)})$

 Хорошая сигнатура события:
 – распад на одно из известных состояний чармония
 – имеет заряд => Nquark ≥ 4

 $Z_{c}^{\pm}(3900): e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}J/\Psi @E_{cm} = 4.26 \, GeV$

 $\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\Psi) = 62.9 \pm 1.9 \pm 3.7 \text{ pb} @ 4.26 \text{ GeV}$

Z_c[±](3900) – первое наблюденное состояние подтвержденное другими экспериментами!

CLEOc: $e^+e^- \rightarrow \psi(4160) \rightarrow$

 $\rightarrow \pi^+\pi^- J/\psi$ (PLB727,366)

 $M = 3886 \pm 4 \pm 2 \text{ MeV}$ $\Gamma = 37 \pm 4 \pm 8 \text{ MeV}$

 81 ± 16 events

13

$Z_c^{\pm,0}(3900)$ –Isospin Triplet

PRL 115, 112003 (2015) $e^+e^- \Rightarrow \pi^0\pi^0 J/\Psi$ M = 3894.8±2.3±3.2 MeV $\Gamma = 29.6\pm 8.2\pm 8.2$ MeV Significance > 10 σ

Поиск $e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp}(3900) \rightarrow \pi^{\pm}(\omega \pi^{\mp})$

PR D92, 032009 (2015)

Выполнен поиск распада $Z_{c}^{\pm} \rightarrow \omega \pi^{\pm}$

Значимого сигнала нет

Пределы (90% CL) на

Борновское сечение

 $\sigma(e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp} \rightarrow \pi^{\pm} \omega \pi^{\mp})$

<0.26 pb для Ecm = 4.23 GeV <0.18 pb для Ecm = 4.26 Gev

$Z_{c}^{\pm}(3900)$ Спин и четность

PWA fit ➤JP=1⁺ prefered over 0⁻,1⁻,2⁻,2⁺ by at least 7σ Significant contr. of $\pi\pi S$ -wave: $\sigma, f_0(980), f_0(1370)$ $> N(Z_c) = 952.3 \pm 39.3$ (stat.) @ 4.23GeV $>N(Z_c)=343.3\pm23.3$ (stat.) @ 4.26GeV

$Z_{c}^{\pm}(3900)$ Спин и четность

PRL 119, 072001 (2017)

Угловые распределения для разных J^p
 *M*_{π[±] J/Ψ} ∈(3.86; 3.92) *GeV* Данные согласуются с J^p = 1⁺

17

$Z_c^{\pm}(3900)$ Параметры из PWA

PRL 119, 072001 (2017)

✓ Flatte формула для параметризации Z_c:

$$BW(s) = \frac{1}{s - M^2 + i[g_1 \rho_{\pi J/\Psi}(s) + g_2 \rho_{D^*D}(s)]}$$

$$M(Z_c) = 3901.5 \pm 2.7 \pm 38.0 \text{ MeV}$$

$$g_1' = 0.075 \pm 0.006 \pm 0.025 \text{ GeV}^2$$

$$g_2'g_1' = 27.1 \pm 2.0 \pm 1.9$$

$$M_{\text{pole}} = 3881.2 \pm 4.2 \pm 52.7 \text{ MeV}$$

$$\Gamma_{\text{pole}} = 51.8 \pm 4.6 \pm 36.0 \text{ MeV}$$

Борновское сечение

Ecm $\sigma(e^+e^- \rightarrow \pi^+ Z_c^- + c.c)$ 4.23 GeV 21.8±1.0±4.4 pb 4.26 GeV 11.0±1.2±5.4 pb

 $Z_c^{\pm,0}(3885)$ in $e^+e^- \rightarrow \pi(D\overline{D}^*)$

PRL 112, 022001 (2014)

PRL 115, 222002 (2015)

$$e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp}(3885) \rightarrow \pi^{\pm} (D \bar{D^*})^{\mp}$$

M = 3883.9±1.5±4.2 MeV
 $\Gamma = 24.8 \pm 3.3 \pm 11.0$ MeV

порог $M(D\bar{D}^*)$ ~3875 MeV

$$e^+e^- \rightarrow \pi^{\pm} Z_c^0 (3885) \rightarrow \pi^0 (D \, \overline{D^*})^0$$

M = 3885.7^{+4.3}_{-5.7} ± 8.4 MeV
 $\Gamma = 35^{+11}_{-12} \pm 15$ MeV

Zc(3885) Спин и четность

 $cos(\theta_{\pi})$ – angle of bachelor π^{+} in the CMS $J^{P}=0^{-}$, $dN/d cos(\theta_{\pi}) \sim 1 - cos^{2}(\theta_{\pi})$ $J^{P}=1^{-}$, $dN/d cos(\theta_{\pi}) \sim 1 + cos^{2}(\theta_{\pi})$ $J^{P}=1^{+}$, $dN/d cos(\theta_{\pi}) \sim flat$ $J^{P}=0^{+}$, parity conservation

• If Zc(3885) is Zc(3900): $\frac{\Gamma(Z_c(3900) \rightarrow D\overline{D^*})}{\Gamma(Z_c(3900) \rightarrow \pi J/\psi)} = 6.2 \pm 1.1 \pm 2.7$

$e^+e^- \rightarrow \pi^+\pi^- h_c$

PRL 111, 242001 (2013)

Data: 13 energy points in [3.90; 4.42] GeV; Lum = 827 pb⁻¹

h_c → γ η_c (~50% all decays of *h_c*);
 η_c → p p̄, 2(π⁺π⁻), 2(K⁺K⁻), K⁺K⁻π⁺π⁻...
 16 exclusive decay modes

One of the most precise measurements parameters of η_c BES-III: PRL 108, 222002 (2012) $M(\eta_c)=2984.3\pm0.6\pm0.6 \text{ MeV}$ $\Gamma(\eta_c)=32.0\pm1.2\pm1.0 \text{ MeV}$

 $Z_{c}^{\pm}(4020)$ in $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}h_{c}$

Видна структура в районе 4.02 GeV

«Намек» на Zc(3900)

Одновременный фит 4.23/4.26/4.36 GeV наборов данных

$Z_c^{\pm,0}(4020)$ in $e^+e^- \rightarrow \pi \pi h_c$

PRL 111, 242001 (2013) $e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp} (4020) \rightarrow \pi^+ \pi^- h_c$ $M = 4022.9 \pm 0.8 \pm 2.7 \text{ MeV}$ $\Gamma = 7.9 \pm 2.7 \pm 2.6 \text{ MeV}$ Significance > 8.9 σ no significant $Z_c(3900)$ (2.1 σ) $\sigma(e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp} (3900) \rightarrow \pi \pi h_c) < 11 \text{ pb}$ (90% CL)@ 4.26 Gev

PRL 113, 212002 (2014)

 $e^+e^- \rightarrow \pi^0 Z_c^0(4020) \rightarrow \pi^0 \pi^0 h_c$ M = 4023.8±2.2±3.8 MeV Γ – fixed to charged Zc(4020)[±] Significance > 5 σ

 $Z_{c}^{\pm,0}(4025)$ in $e^{+}e^{-} \rightarrow \pi(D^{*}D^{*})$

PRL 112, 132001 (2014)

 $e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp} (4025) \rightarrow \pi^{\pm} (D^* \overline{D}^*)^{\mp}$ M = 4026.3±2.6±3.7 MeV $\Gamma = 24.8\pm 5.6\pm 7.7$ MeV Significance > 10 σ

порог $M(D^*\bar{D^*})$ ~4017 MeV

$$e^+e^- \rightarrow \pi^0 Z_c^0(4025) \rightarrow \pi^0 (D^* \bar{D^*})^0$$

 $M = 4025.5^{+2.0}_{-4.7} \pm 3.1 \text{ MeV}$
 $\Gamma = 23.0 \pm 6.0 \pm 1.0 \text{ MeV}$

Поиск Z_c^{\pm} в $e^+e^- \rightarrow \pi^+\pi^- \Psi'$

PR D96, 032004 (2017)

- ✓ Ψ(3686) реконструировался в двух модах:
 - 1. $\Psi(3686) \rightarrow \pi^+ \pi^- J/\Psi$
 - 2. $\Psi(3686) \rightarrow neutrals J/\Psi$
- ✓ Наблюдается пик в инвариантной массе М(πΨ(3686)) для энергии 4.416 GeV
- И Выполнен фит диаграммы Далица М²(π⁺ Ψ(3686)) vs M²(π⁻ Ψ(3686)) без учета интерференции с промежуточными состояниями
- ✔ Получены значения:

 $M = 4032.1 \pm 2.4 \text{ MeV/c}^2 \quad \Gamma = 26.1 \pm 5.3 \text{MeV} \text{ (significance > 9 \sigma)}$

Однако фит плохо описывает данные!

Фит Z_c^{\pm} в $e^+e^- \rightarrow \pi^+\pi^- \Psi'$ для других энергий

PR D96, 032004 (2017)

Всё вместе об Zc

Zc	Decay	Mass (MeV/c ²)	Width (Mev)	$\mathbf{J}^{\mathbf{p}}$
$Z_{c}^{+}(3900)$	π^+ J/ Ψ	3899.0±3.6±4.9	46±10±20	1+
Z _c ⁰ (3900)	$\pi^0 \; \mathrm{J/\Psi}$	3894.8±2.3±3.2	29.6±8.2±8.2	
$Z_{c}^{+}(3885)$	(DD*)+	3883.9±1.5±4.2	24.8±3.3±11.0	1+
$Z_{c}^{0}(3885)$	$(DD^{*})^{0}$	3885.7 ^{+4.3} -5.7 ±8.4	$35^{+11}_{-12} \pm 15$	
$Z_{c}^{+}(4020)$	$\pi^{+} h_{c}$	4022.9±0.8±2.7	7.9±2.7±2.6	
$Z_{c}^{0}(4020)$	$\pi^0 h_c$	4023.8±2.2±3.8		
$Z_{c}^{+}(4025)$	$(D*D*)^{+}$	4026.3±2.6±3.7	24.8±5.6±7.7	
Z _c ⁰ (4025)	$(D^*D^*)^0$	4025.5 ^{+2.0} -4.7 ±3.1	$23.0\pm6.0\pm1.0$	

- Zc(3900) и Zc(3885) одно состояние? (Zc(4020) и Zc(4025) ?)
- Zc в πΨ(3686) системе?

Перспективы

- Поиск других мод распада: $Zc \to \rho^{\pm}\eta_{c} \dots$
- Более детальное исследование $Zc \to \pi^{\pm}\psi'$
- Сечение σ(π Zc) в зависимости от энергии
- PWA для Zc⁰(3900) и Zc(4020)

Заключение

- BES-III успешно набирает данные с 2009:
 - 'Данные по J/ψ, ψ(2S), ψ(3770) самые большие в мире.
 - ^чНабрана уникальная статистика для изучения XYZ-состояний
- Прогресс в изучении заряженных чармоний-подобных состояний:
 - Наблюдаются два изоспиновых триплета Zc(3900) и Zc(4020)
 - ·Определено, что для Zc(3900) J^P=1⁺
 - Обнаружена новая Zc структура в $\pi^{\pm}\psi'$
- Природа XYZ-состояний все еще не ясна, нужны новые экспериментальные данные и новые идеи

В ближайшее время ожидайте новых данных и новых результатов в эксперименте BES-III

Backup

 $e^+e^- \rightarrow Y(4260) \rightarrow \pi^+\pi^- J/\psi$

BES-III: PRL110, 252001

• J/ ψ clearly identified in dilepton decay modes

Сечение $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

BES-3: PRL110, 252001: $\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\Psi) = 62.9 \pm 1.9 \pm 3.7$ pb

- Сечение согласуется с BaBar, Belle и CLEO-с!
- Лучшая точность!

Simultaneous fit of shown η_c decay modes.

- η_c line shape: interference with non- η_c decays
- phases for different modes are consistent within 3σ , a common phase is used

BES-III result:

Currently the most precise measurements!

h_c и η_c в данных

* Показано окно: ~50 MeV вокруг табличного значения M(ηc)
 * Эффективность ~85% (MC)

Сечение $e^+e^- \rightarrow \pi^+\pi^-h_c$

