
Belle II Analysis Software Tutorial

Belle II Analysis
Software Overview

Anže Zupanc
Jožef Stefan Institute and University of Ljubljana

1

Setup the environment

2

• Follow instructions posted on today’s tutorial confluence page

https://confluence.desy.de/display/BI/
Physics+HandsOnAnalysisTutorialJune2017

• Confirm that everything works for you by executing

basf2 --info
basf2 modularAnalysis.py
basf2 variables.py

https://confluence.desy.de/display/BI/Physics+HandsOnAnalysisTutorialJune2017
https://confluence.desy.de/display/BI/Physics+HandsOnAnalysisTutorialJune2017

Understanding the input: mDST format

3

• Physics analyses are performed on mDST (mini Data Summary
Table) data format
• Do you know what objects does it include?
• Do you know how are these objects related to each other?

Understanding the input: mDST format

3

• Physics analyses are performed on mDST (mini Data Summary
Table) data format
• Do you know what objects does it include?
• Do you know how are these objects related to each other?

It’s very easy to find out! Let’s print the content of the DataStore for
10 events in one generic MC7 file:
basf2 $BELLE2_RELEASE_DIR/analysis/examples/printDataStore.py -n 10 -i input_mdst_file.root

Understanding the input: mDST format

3

• Physics analyses are performed on mDST (mini Data Summary
Table) data format
• Do you know what objects does it include?
• Do you know how are these objects related to each other?

It’s very easy to find out! Let’s print the content of the DataStore for
10 events in one generic MC7 file:
basf2 $BELLE2_RELEASE_DIR/analysis/examples/printDataStore.py -n 10 -i input_mdst_file.root

steering file process only 10 events use this file as input

Understanding the input: mDST format

3

• Physics analyses are performed on mDST (mini Data Summary
Table) data format
• Do you know what objects does it include?
• Do you know how are these objects related to each other?

It’s very easy to find out! Let’s print the content of the DataStore for
10 events in one generic MC7 file:
basf2 $BELLE2_RELEASE_DIR/analysis/examples/printDataStore.py -n 10 -i input_mdst_file.root

steering file process only 10 events use this file as input

MC7 can be found here:
https://confluence.desy.de/display/BI/MC7+samples+for+analysis+users

https://confluence.desy.de/display/BI/MC7+samples+for+analysis+users

Understanding the input: mDST format

4

Belle II Analysis Software

5

Analysis Software Overview

Modular, common set of configurable algorithms
with intuitive python steering and sequencing

Analysis Specific tasks

your work, the physics

Generic tasks

similar in each analysis

Standardized ! less error prone

Load
skim / MDST

MDST objects) Particles

Particle Combinations

MC Truth Matching

Particle Vertexing

Analysis Specific Selection

Continuum Suppression

Write Properties to nTuple

O↵-line Analysis
Fine cuts, Fitting, ...

2

A. Zupanc (JSI) Analysis Objects and Tools B2ComputingM, 6/5/2014 2 / 18

Analysis Software Overview

Modular, common set of configurable algorithms
with intuitive python steering and sequencing

Analysis Specific tasks

your work, the physics

Generic tasks

similar in each analysis

Standardized ! less error prone

Load
skim / MDST

MDST objects) Particles

Particle Combinations

MC Truth Matching

Particle Vertexing

Analysis Specific Selection

Continuum Suppression

Write Properties to nTuple

O↵-line Analysis
Fine cuts, Fitting, ...

2

A. Zupanc (JSI) Analysis Objects and Tools B2ComputingM, 6/5/2014 2 / 18

• User writes simple python scripts to reconstruct
decays of interest and writes desired quantities to
nTuples for off-line analysis

Further information

Analysis Software confluence page Tutorials

https://confluence.desy.de/display/BI/Physics+AnalysisSoftware
https://confluence.desy.de/display/BI/Physics+AnalysisTutorials

Belle II Analysis Software

5

Analysis Software Overview

Modular, common set of configurable algorithms
with intuitive python steering and sequencing

Analysis Specific tasks

your work, the physics

Generic tasks

similar in each analysis

Standardized ! less error prone

Load
skim / MDST

MDST objects) Particles

Particle Combinations

MC Truth Matching

Particle Vertexing

Analysis Specific Selection

Continuum Suppression

Write Properties to nTuple

O↵-line Analysis
Fine cuts, Fitting, ...

2

A. Zupanc (JSI) Analysis Objects and Tools B2ComputingM, 6/5/2014 2 / 18

Analysis Software Overview

Modular, common set of configurable algorithms
with intuitive python steering and sequencing

Analysis Specific tasks

your work, the physics

Generic tasks

similar in each analysis

Standardized ! less error prone

Load
skim / MDST

MDST objects) Particles

Particle Combinations

MC Truth Matching

Particle Vertexing

Analysis Specific Selection

Continuum Suppression

Write Properties to nTuple

O↵-line Analysis
Fine cuts, Fitting, ...

2

A. Zupanc (JSI) Analysis Objects and Tools B2ComputingM, 6/5/2014 2 / 18

• User writes simple python scripts to reconstruct
decays of interest and writes desired quantities to
nTuples for off-line analysis

Further information

Analysis Software confluence page Tutorials

https://confluence.desy.de/display/BI/Physics+AnalysisSoftware
https://confluence.desy.de/display/BI/Physics+AnalysisTutorials

Belle II Analysis Software

6

Data objects + Container

Particle + ParticleList
(and RestOfEvent,

ContinuumSuppression,FlavourTaggerInfo,…)

Core Analysis Modules

perform basic analysis actions on Particle(Lists):
cutting, fitting, mc matching, combining

Ntuple Production

offline analysis

Steering
Mechanism

DecayString

Variable
Manager

p, E, Mbc,
…

Python functions (for more human readable analysis steering scripts)

Data objects: Particle class

7

Particle class is a common representation of all particle types
• final states particles detected at Belle II

• charged e/μ/π/K/p reconstructed as Tracks
• γ reconstructed as ECLClusters
• Klong reconstructed as KLMClusters in the ECL/KLM

• kinematically reconstructed (composite) particles
• π0, Ks, D, B, ...

Private members of the Particle are limited to only those which define a particle and are
common to all particle types (momentum, position, PDG code, covariance m., …).
All other information which exists and is relevant only for certain types of particles is
saved in the independent data-objects accessible via BASF2 Relations:

• ContinuumSupression (various FW moments, angles, …)
• FlavourTaggerInfo
• ExtraInfo (any user-defined floating-point value identified by a string key)

Data objects: Particle class

7

Particle class is a common representation of all particle types
• final states particles detected at Belle II

• charged e/μ/π/K/p reconstructed as Tracks
• γ reconstructed as ECLClusters
• Klong reconstructed as KLMClusters in the ECL/KLM

• kinematically reconstructed (composite) particles
• π0, Ks, D, B, ...

Private members of the Particle are limited to only those which define a particle and are
common to all particle types (momentum, position, PDG code, covariance m., …).
All other information which exists and is relevant only for certain types of particles is
saved in the independent data-objects accessible via BASF2 Relations:

• ContinuumSupression (various FW moments, angles, …)
• FlavourTaggerInfo
• ExtraInfo (any user-defined floating-point value identified by a string key)

ParticleList: collection of Particles

8

ParticleList provides ability to group together particles and anti-particles that logically belong
together:

• all π0 candidates that have invariant mass within certain window  
• all D0 candidates reconstructed in decay mode

ParticleList can store only particles with same PDG code (which however can be
reconstructed in different decay modes).
ParticleList doesn’t have ownership of Particle objects that it collects.
ParticleList is the dataobject with which the analysis modules operate (input/output).

D0 ! K�⇡ + (D0 ! K+⇡�)

Example:
• reconstruction of D0 -> K- pi+ pi0 candidates with ParticleCombiner

reconstructDecay(‘D0:myD0 -> K-:tight pi+:all pi0:loose’,’’)

ParticleList: collection of Particles

8

ParticleList provides ability to group together particles and anti-particles that logically belong
together:

• all π0 candidates that have invariant mass within certain window  
• all D0 candidates reconstructed in decay mode

ParticleList can store only particles with same PDG code (which however can be
reconstructed in different decay modes).
ParticleList doesn’t have ownership of Particle objects that it collects.
ParticleList is the dataobject with which the analysis modules operate (input/output).

D0 ! K�⇡ + (D0 ! K+⇡�)

Example:
• reconstruction of D0 -> K- pi+ pi0 candidates with ParticleCombiner

reconstructDecay(‘D0:myD0 -> K-:tight pi+:all pi0:loose’,’’)

Python module to wrap ParticleCombiner analysis module

ParticleList: collection of Particles

8

ParticleList provides ability to group together particles and anti-particles that logically belong
together:

• all π0 candidates that have invariant mass within certain window  
• all D0 candidates reconstructed in decay mode

ParticleList can store only particles with same PDG code (which however can be
reconstructed in different decay modes).
ParticleList doesn’t have ownership of Particle objects that it collects.
ParticleList is the dataobject with which the analysis modules operate (input/output).

D0 ! K�⇡ + (D0 ! K+⇡�)

Example:
• reconstruction of D0 -> K- pi+ pi0 candidates with ParticleCombiner

reconstructDecay(‘D0:myD0 -> K-:tight pi+:all pi0:loose’,’’)
DecayString

ParticleList: collection of Particles

8

ParticleList provides ability to group together particles and anti-particles that logically belong
together:

• all π0 candidates that have invariant mass within certain window  
• all D0 candidates reconstructed in decay mode

ParticleList can store only particles with same PDG code (which however can be
reconstructed in different decay modes).
ParticleList doesn’t have ownership of Particle objects that it collects.
ParticleList is the dataobject with which the analysis modules operate (input/output).

D0 ! K�⇡ + (D0 ! K+⇡�)

Example:
• reconstruction of D0 -> K- pi+ pi0 candidates with ParticleCombiner

reconstructDecay(‘D0:myD0 -> K-:tight pi+:all pi0:loose’,’’)
inputoutput input input

ParticleList(s)

ParticleList: collection of Particles

9

The unique identifier of the ParticleList is its name. According to the naming convention the
ParticleList's name has to be of the form:

ParicleListName = particle_name:label
where particle_name is the name of the particle as given in the evt.pdl and the label can be
any string indicating the selection criteria or decay mode (or anything else) used to
reconstruct the particles. Examples are:

• pi+:loose - pi+ candidates passing loose PID requirements
• D0:kpi - D0 candidates reconstructed in D0->Kpi decays
• B+:myVeryOwnBCandidates - my very own precious B+ candidates

evt.pdl = $BELLE2_EXTERNALS_DIR/share/evtgen/evt.pdl

ParticleList: collection of Particles

10 evt.pdl = $BELLE2_EXTERNALS_DIR/share/evtgen/evt.pdl

What if I’m looking for an hypothetical particle that is not included in
the evt.pdl?

• Add it in your steering file by yourself!

import pdg
pdg.add_particle(name, pdg, mass(GeV), width(GeV),

charge(e), spin, max_width(GeV), lifetime(0), pythiaID)

Python functions
List of Steering functions

11

The full list of all functions (with parameters explained) that are defined can be printed out with

https://confluence.desy.de/display/BI/Physics+AnalysisSteering

Exercise 1

12

• Use MC7 sample from before
• Create charged pion, photon and Kshort candidates (without any selection criteria)
• print content of DataStore as before
• print momentum of each pion, photon and invariant mass of each Kshort

Exercise 1

12

• Use MC7 sample from before
• Create charged pion, photon and Kshort candidates (without any selection criteria)
• print content of DataStore as before
• print momentum of each pion, photon and invariant mass of each Kshort

Exercise 1

12

• Use MC7 sample from before
• Create charged pion, photon and Kshort candidates (without any selection criteria)
• print content of DataStore as before
• print momentum of each pion, photon and invariant mass of each Kshort

Why is number of Kshorts not equal to number of V0 dataobjects?

Exercise 2

13

• Use steering file from Exercise 1
• Perform a cut (E > 0.3 GeV) on the photon particle list
• Copy charged pions with piid>0.1 from the existing list to a new one
• Print again the energy of photons and momentum of pions from the new list
• Compare the numbers of all Particles in DataStore (for the same event) from

exercises 1 and 2

Exercise 2

13

• Use steering file from Exercise 1
• Perform a cut (E > 0.3 GeV) on the photon particle list
• Copy charged pions with piid>0.1 from the existing list to a new one
• Print again the energy of photons and momentum of pions from the new list
• Compare the numbers of all Particles in DataStore (for the same event) from

exercises 1 and 2

Exercise 2

13

• Use steering file from Exercise 1
• Perform a cut (E > 0.3 GeV) on the photon particle list
• Copy charged pions with piid>0.1 from the existing list to a new one
• Print again the energy of photons and momentum of pions from the new list
• Compare the numbers of all Particles in DataStore (for the same event) from

exercises 1 and 2
Why is the number of all Particles in the event same as before?

Exercise 3

14

• Use steering file from Exercise 2
• Reconstruct D0 -> pi+ pi- candidates using the new pion list
• Print the invariant mass of all D0 candidates
• Compare the numbers of all Particles in DataStore (for the same event) from

exercises 2 and 3
• Is the difference equal to the number of D0 candidates?

Exercise 3

14

• Use steering file from Exercise 2
• Reconstruct D0 -> pi+ pi- candidates using the new pion list
• Print the invariant mass of all D0 candidates
• Compare the numbers of all Particles in DataStore (for the same event) from

exercises 2 and 3
• Is the difference equal to the number of D0 candidates?

Analysis modules

15

BASF2 analysis module performs a single well defined action
• makes combinations, performs vertex fits, performs mc matching, calculates

continuum suppression variables, …
• each module usually creates a new Particle or other data object or modifies the existing

one

User doesn’t need to write C++ code, but provides instead a BASF2 python steering
file where he specifies the action to be performed on given input ParticleList(s)

Analysis modules

16

Modules

https://confluence.desy.de/display/BI/Physics+AnalysisModules

Analysis modules

16

Modules

• Core analysis modules are developed

• All analysis modules perform their action on
charged-conjugated list/process automatically

1. reconstructDecay(‘D0:myD0 -> K-:tight pi+:all pi0:loose’,’’)
creates anti-D0 -> K+ pi- pi0 candidates as well and
stores them to ‘anti-D0:myD0’ ParticleList

2. vertexKFit(‘D0:myD0’)
performs vertex fits on all candidates in the charge-
conjugated list (‘anti-D0:myD0’) as well

https://confluence.desy.de/display/BI/Physics+AnalysisModules

Decay String

18

DecayString

The DecayString is an elegant way of telling the analysis modules about the structure
and the particles of a decay tree.
It has to be stressed that the decay string purely specifies a decay tree. It does not contain
any physical interpretation of the decay, for example if it is allowed or not.

Examples:
• specifying the decay to be reconstructed by the ParticleCombiner

reconstructDecay(‘D0:myD0 -> K-:tight pi+:all pi0:loose’,’’)

DecayString that tells ParticleCombiner module to create ‘D0:myD0’ ParticleList
and fill it with D0 particle candidates created by making all combinations of K- candidates from

‘K-:tight’, pi+ candidates form ‘pi+:all’ and pi0 candidates from ‘pi0:loose’ ParticleList

https://confluence.desy.de/display/BI/Physics+DecayString
https://belle2.cc.kek.jp/~twiki/bin/view/Physics/DecayString

Decay String

19

DecayString

The DecayString is an elegant way of telling the analysis modules about the structure
and the particles of a decay tree.
It has to be stressed that the decay string purely specifies a decay tree. It does not contain
any physical interpretation of the decay, for example if it is allowed or not.

Examples:
• selecting a Particle in the decay chain for which we wish to save particular

Variable or nTupleTool

tools += ['PID', 'D*+ -> [D0 -> ^K- ^pi+] ^pi+']

DecayString that tells NtupleMaker module to create PID-related branches
only for charged kaons and pions in this D*+ -> D0 pi+; D0 -> K- pi+; decay chain.

(PID-related quantities are only defined for charged FSPs.)

^ - is used to “select” particle in the DecayString

https://belle2.cc.kek.jp/~twiki/bin/view/Physics/DecayString
https://belle2.cc.kek.jp/~twiki/bin/view/Physics/DecayString

Mbc > 5.2 GeV and |�E| < 0.2 GeV

Variable Manager

20

Variables and VariableManager

Examples:
• specifying the ParticleCombiner to keep only B candidates with

reconstructDecay(‘B+ -> anti-D0:myD0 pi+:all’,’Mbc > 5.2 and abs(deltaE) < 0.2’)

• VariableManager library is the central place in the analysis package for
calculations of various simple or derived quantities needed for
• performing (on-line) selection
• flat ntuple production for offline analysis

• All Variables registered to the VariableManager can be used inside C++, and
as parameters for analysis modules in python steering scripts

https://confluence.desy.de/display/BI/Physics+VariableManager
https://belle2.cc.kek.jp/~twiki/bin/view/Physics/VariableManager
https://belle2.cc.kek.jp/~twiki/bin/view/Physics/VariableManager

Mbc > 5.2 GeV and |�E| < 0.2 GeV

Variable Manager

20

Variables and VariableManager

Examples:
• specifying the ParticleCombiner to keep only B candidates with

reconstructDecay(‘B+ -> anti-D0:myD0 pi+:all’,’Mbc > 5.2 and abs(deltaE) < 0.2’)

• VariableManager library is the central place in the analysis package for
calculations of various simple or derived quantities needed for
• performing (on-line) selection
• flat ntuple production for offline analysis

• All Variables registered to the VariableManager can be used inside C++, and
as parameters for analysis modules in python steering scripts

Executing basf2 variables.py’
returns a complete list

List of all defined Variables

https://confluence.desy.de/display/BI/Physics+VariableManager
https://belle2.cc.kek.jp/~twiki/bin/view/Physics/VariableManager
https://belle2.cc.kek.jp/~twiki/bin/view/Physics/VariableManager

Mbc > 5.2 GeV and |�E| < 0.2 GeV

Variable Manager

20

Variables and VariableManager

Examples:
• specifying the ParticleCombiner to keep only B candidates with

reconstructDecay(‘B+ -> anti-D0:myD0 pi+:all’,’Mbc > 5.2 and abs(deltaE) < 0.2’)

• VariableManager library is the central place in the analysis package for
calculations of various simple or derived quantities needed for
• performing (on-line) selection
• flat ntuple production for offline analysis

• All Variables registered to the VariableManager can be used inside C++, and
as parameters for analysis modules in python steering scripts

Executing basf2 variables.py’
returns a complete list

List of all defined Variables

• Variable types
• simple (no additional arguments/parameters)

• p, px, DLLKaon, Mbc, M, dM, isSignal, R2, …
• parameter (require additional arguments/parameters)

• daughterInvariantMass(0,1) = invariant mass of first and second
daughter

• massDifference(0) = difference between invariant masses of this and
particle and first daughter

• meta (‘combinations’ of functions/variables)
• daughter(1, M) = invariant Mass of the first daughter
• abs(deltaE) = absolute value of DeltaE
• extraInfo(signalProbability) = signalProbability stored as extraInfo
• formula(v1 + v2 * v3 - v4 / v5^v6) = simple formulas of any variables

https://confluence.desy.de/display/BI/Physics+VariableManager
https://belle2.cc.kek.jp/~twiki/bin/view/Physics/VariableManager
https://belle2.cc.kek.jp/~twiki/bin/view/Physics/VariableManager

Variables

21

Variable Aliases:
• sometimes variable names can get very long

• define alias instead!

Variable aliases

https://belle2.cc.kek.jp/~twiki/bin/view/Physics/VariableManager#Variable_aliases

Exercise 4

22

• Create new steering file
• Reconstruct B -> J/psi K0s; J/psi -> ee and mumu;
• Require that at least one of the leptons from J/psi is positively identified as an

electron or muon (e.g. by requiring that eid>0.1 or muid>0.1)
• Run over MC7 signal MC (link)

• include one file for J/psi->ee (B->JpsiKL MC; sorry no B->JpsiKS MC available)
• include one file for J/psi -> mumu (B->J/psiKs MC)

• print summary of B0 list at the end

https://confluence.desy.de/display/BI/MC7+phase+III+-+Y%284S%29+signal+samples

Exercise 4

22

• Create new steering file
• Reconstruct B -> J/psi K0s; J/psi -> ee and mumu;
• Require that at least one of the leptons from J/psi is positively identified as an

electron or muon (e.g. by requiring that eid>0.1 or muid>0.1)
• Run over MC7 signal MC (link)

• include one file for J/psi->ee (B->JpsiKL MC; sorry no B->JpsiKS MC available)
• include one file for J/psi -> mumu (B->J/psiKs MC)

• print summary of B0 list at the end

https://confluence.desy.de/display/BI/MC7+phase+III+-+Y%284S%29+signal+samples

Flat nTuples

23

NTupleMaker creates and fills flat ntuples with user specified content for offline
analysis. The content of the ntuple can be defined in two ways:

NTupleMaker How to create ntuple

1. Using nTupleTools with predefined content

2. Using CustomFloats nTupleTool with user defined content

List of tools

all Variables (meta, alias, parameter, …),
separated with ‘:’

https://confluence.desy.de/display/BI/Physics+NtupleMakerTutorial
https://confluence.desy.de/display/BI/Physics+NtupleMaker
https://confluence.desy.de/display/BI/Physics+NtupleTool

Exercise 5

24

• Use the steering file from exercise 4
• Create ntuple and fill it with:

• DeltaE and Mbc of B candidates
• J/psi and KShort invariant masses
• J/psi decay mode ID (define alias!)
• eid and muid of J/psi daughters

Exercise 5

24

• Use the steering file from exercise 4
• Create ntuple and fill it with:

• DeltaE and Mbc of B candidates
• J/psi and KShort invariant masses
• J/psi decay mode ID (define alias!)
• eid and muid of J/psi daughters

Exercise 6

25

• Plot number of candidates per event

Exercise 6

25

• Plot number of candidates per event

Exercise 6

26

• Can I draw only one candidate per event?
• At this stage (no best candidate selection yet) there are two possibilities:

1. Draw only 1st candidate in an event
2. Draw all candidates in an event but weighted with 1/nCandidates

Exercise 6

26

• Can I draw only one candidate per event?
• At this stage (no best candidate selection yet) there are two possibilities:

1. Draw only 1st candidate in an event
2. Draw all candidates in an event but weighted with 1/nCandidates

Exercise 6

27

• What is the source of multiple candidates?

Exercise 6

27

• What is the source of multiple candidates?

Exercise 7

28

• Use the steering file from exercise 5
• Sort candidates (ascending order) according to

• add rank to ntuple
• print above quantities on ~100 events to better understand them before running

over all events

Hint: check ‘SigM’ variable

����
m`` �MJ/

�(m``)

����+
����
m⇡⇡ �MK0

S

�(m⇡⇡)

����

Exercise 7

28

• Use the steering file from exercise 5
• Sort candidates (ascending order) according to

• add rank to ntuple
• print above quantities on ~100 events to better understand them before running

over all events

Hint: check ‘SigM’ variable

����
m`` �MJ/

�(m``)

����+
����
m⇡⇡ �MK0

S

�(m⇡⇡)

����

Exercise 8

29

• Draw the best (and the rest) candidate(s)

Exercise 8

29

• Draw the best (and the rest) candidate(s)

Analysis modules and execution path

30

Normally, a module's event() function is called once per event while any repeated
processing is performed inside this call by e.g. looping over an array of input data.

Example:
• reconstruction of B0 -> rho0 gamma decay

Ex
ec

ut
io

n
se

qu
en

ce
 in

 m
ai

n
pa

th

ParticleLoader
ECLClusters -> Photons (Particles)

Tracks -> Pions (Particles)

ParticleCombiner
rho0 -> pi+ pi-

B0 -> rho0 gamma

ParticleVertexFitter

ContinuumSupression

NtupleMaker

M
od

ul
e’

s
ev

en
t()

 f.
 c

al
le

d
on

ce
 p

er
 e

ve
nt

Analysis modules and execution path

30

Normally, a module's event() function is called once per event while any repeated
processing is performed inside this call by e.g. looping over an array of input data.

Example:
• reconstruction of B0 -> rho0 gamma decay

Ex
ec

ut
io

n
se

qu
en

ce
 in

 m
ai

n
pa

th

ParticleLoader
ECLClusters -> Photons (Particles)

Tracks -> Pions (Particles)

ParticleCombiner
rho0 -> pi+ pi-

B0 -> rho0 gamma

ParticleVertexFitter

ContinuumSupression

NtupleMaker

M
od

ul
e’

s
ev

en
t()

 f.
 c

al
le

d
on

ce
 p

er
 e

ve
nt

Q: Does signal photon candidate originate from a π0 decay?
A: Combine signal photon candidate with other photons in an
 event and check if the pair is consistent with π0 hypothesis.

Analysis modules and execution path

30

Normally, a module's event() function is called once per event while any repeated
processing is performed inside this call by e.g. looping over an array of input data.

Example:
• reconstruction of B0 -> rho0 gamma decay

Ex
ec

ut
io

n
se

qu
en

ce
 in

 m
ai

n
pa

th

ParticleLoader
ECLClusters -> Photons (Particles)

Tracks -> Pions (Particles)

ParticleCombiner
rho0 -> pi+ pi-

B0 -> rho0 gamma

ParticleVertexFitter

ContinuumSupression

NtupleMaker

M
od

ul
e’

s
ev

en
t()

 f.
 c

al
le

d
on

ce
 p

er
 e

ve
nt

Q: Does signal photon candidate originate from a π0 decay?
A: Combine signal photon candidate with other photons in an
 event and check if the pair is consistent with π0 hypothesis.

{
For each B0 candidate in an event:

M
od

ul
e’

s
ev

en
t()

 f.
 c

al
le

d

on
ce

 p
er

 e
nt

ry
 in

 g
iv

en
 S

to
re

A
rr

ay ParticleLoader
Remaining ECLClusters -> other Photons

ParticleCombiner
pi0 -> gamma (sig) gamma (other)

MVA classifier
construct pi0 probability for given signal photon

Analysis modules and execution path

30

Normally, a module's event() function is called once per event while any repeated
processing is performed inside this call by e.g. looping over an array of input data.

Example:
• reconstruction of B0 -> rho0 gamma decay

Ex
ec

ut
io

n
se

qu
en

ce
 in

 m
ai

n
pa

th

ParticleLoader
ECLClusters -> Photons (Particles)

Tracks -> Pions (Particles)

ParticleCombiner
rho0 -> pi+ pi-

B0 -> rho0 gamma

ParticleVertexFitter

ContinuumSupression

NtupleMaker

M
od

ul
e’

s
ev

en
t()

 f.
 c

al
le

d
on

ce
 p

er
 e

ve
nt

Q: Does signal photon candidate originate from a π0 decay?
A: Combine signal photon candidate with other photons in an
 event and check if the pair is consistent with π0 hypothesis.

{
For each B0 candidate in an event:

M
od

ul
e’

s
ev

en
t()

 f.
 c

al
le

d

on
ce

 p
er

 e
nt

ry
 in

 g
iv

en
 S

to
re

A
rr

ay ParticleLoader
Remaining ECLClusters -> other Photons

ParticleCombiner
pi0 -> gamma (sig) gamma (other)

MVA classifier
construct pi0 probability for given signal photon

All analysis modules
can be executed in
path for each entry

in some array

Exercise 9

31

• Use the steering file from exercise 7
• Create RestOfEvent object for each B0 candidate
• Loop over tracks in RestOfEvent and attach the eid and muid of the most electron/

muon like track to B0 candidate
• dump this info to ntuple
• but first inspect the content of ROE by printing it out on few 10 events

Hint: check $BELLE2_RELEASE_DIR/analysis/examples/tutorials/B2A306-B02RhoGamma-withPi0Veto.py for
reference

Exercise 9

32

RootOuput - standard BASF2 output module
 for μDST production

33

μDST
data

MDST +
Btag candidates

(Particle(s)+ParticleList(s)) {

Bsig Reconstruction
+ analysis specific tasks

uDST
data

MDST +
Btag + Bsig candidates

and other physics’ objects {

Ntuple

MDST
data

Preparation of
FS Particles

Btag Reconstruction
(Hadronic/Semileptonic)

Analysis
(selection/calculation)

RootOuput - standard BASF2 output module
 for μDST production

33

μDST
data

MDST +
Btag candidates

(Particle(s)+ParticleList(s)) {

Bsig Reconstruction
+ analysis specific tasks

uDST
data

MDST +
Btag + Bsig candidates

and other physics’ objects {

Ntuple

MDST
data

Preparation of
FS Particles

Btag Reconstruction
(Hadronic/Semileptonic)

Analysis
(selection/calculation)

All physics analysis related
data objects can be stored to
μDST data and thus used at

later stages of analysis
within BASF2.

Exercise 10

34

• Use the steering file from exercise 9
• Create microDST file (miniDST + physics analysis data objects, like ParticleLists,

Particles, ROE, …)
• After you create the microDST file check print the its DataStore content

Exercise 10

34

• Use the steering file from exercise 9
• Create microDST file (miniDST + physics analysis data objects, like ParticleLists,

Particles, ROE, …)
• After you create the microDST file check print the its DataStore content

Exercise 11

35

• Run over microDST file produced in exercise 10
• fill the same ntuple as before and compare the content with previous ones without

reconstructing the J/psi, B0, …, again

Exercise 11

35

• Run over microDST file produced in exercise 10
• fill the same ntuple as before and compare the content with previous ones without

reconstructing the J/psi, B0, …, again

