

DIRC Detector Possibilities for SCTF

Mustafa Schmidt

SCTF Online Meeting

August 16, 2019

DIRC Detectors

SCTF Design

SCTF Detector

DIRC detectors in the green area (Barrel and Disc DIRC)

Goal: Covering full solid angle and phase space

PANDA Spectrometer

FAIR

- Antiprotons \bar{p} from HESR
- High luminosity mode:

 ${\cal L}=2\cdot 10^{32}\,{\rm cm}^{-2}{\rm s}^{-1}$

• Average interaction rate:

PANDA

- $\bar{p}p$ collisions with hydrogen target
- Created particles with forward boost in *z*-direction
- Excellent PID necessary to fulfill physics program goals

Particle Identification

No hadronic calorimeter in PANDA

Two DIRC detectors for PID in target spectrometer

DIRC: Detection of Internally Reflected Cherenkov Light

Disc DIRC

Disc DIRC Design Parameters:

- Separation of π/K
- Momentum range: $0.5\,\text{GeV}/\text{c} \le p < 4\,\text{GeV}/\text{c}$
- Polar angle range: $5^{\circ} \leq \theta \leq 22^{\circ}$
- Performance goal: \geq 3 s.d. separation over full phase space
 - \Rightarrow Average detector resolution \leq 1.7 mrad required

Technical Specifications

- 8 Readout Modules (ROMs) per side \Rightarrow 96 ROMs in total
- Readout: PETsys TOFPET ASICs with 30 ps LSB
- 5 ASICs with 64 channels per ROM
- 300 pixels per MCP-PMTs \Rightarrow 28,800 readout channels
- Approx. 1 charged track per collision (22 photon hits per track)
- Hit frequency per channel: 60 kHz in high luminosity mode
- Connection to PANDA DAQ system
- Using SODAnet for time synchronisation

DIRC Detectors

High Resolution Simulations

Simulatiated scan with high resolution for π^+/K^+ for full radiator quadrant including solenoid field of target spectrometer:

Momentum 2 GeV/c

Momentum 4 GeV/c

• Overlapping of hit patterns (drop of separation power)

• Inefficient area shifting as function of momentum

Geant4 Simulations

All detector components recently implemented in standalone Geant4 framework

Refining still ongoing

Muon/Pion Separation

Muon/Pion separation for 1 GeV/c momentum:

Likelihood Distribution

Mustafa Schmidt

Momentum scan

Scan for μ^+/π^+ separation in SCTF:

Momentum Scan

10/19

Many possibilities for optimizations:

- Increasing radiator thickness for larger photon yield
- Sensor Optimization
 - Specifications of photo cathode
 - Different filter options
 - Increased collection efficiency
- Switching from MCP-PMTs to SiPMs
- Choosing a suitable readout system

Barrel DIRC

- 48 radiator bars (16 sectors), synthetic fused silica 17mm (T) × 53mm (W) × 2400mm (L)
- Mirror attached to one bar end to reflect photon back through to readout end.
- 3-layer spherical lens
- 30 cm deep solid fused silica prisms, 8200 channels of lifetime-enhanced MCP-PMTs
- Fast FPGA-based readout electronics 100ps per photon timing resolution
- Simulations: ≥ 3 s.d. π/K separation for entire acceptance

Performance Studies

Performance goal for π/K separation achievable for all required polar angles and momenta

Simulation studies for μ/π separation recently started

Thank you very much for your attention!

Backup Slides

Electronics in Final Detector

TOFPET ASICS attached to MCP-PMTs

16/19

Overlapping Hitpattern

Hitpattern overlap due to reflections at outer rim

Simulated hitpattern

- Simulated hitpatterns are shifting as function of azimuth angle
- Full overlap cannot be observed due to bending inside magnetic field

Online Reconstruction

- Requirement: Usable with 20 MHz interaction frequency
- SiTCP package developed at KEK for gigabit ethernet communication
- Prototype working with ML403 board and Xilinx Virtex 4 chip
- Available block RAM: 648 kB
- Clock frequency: 130 MHz
- Sending data in 8 bit blocks per clock cycle into FIFO buffer
- Small self-written C++ client sending simulation data to FPGA card

Radiation Hardness

Simulated Radiation Dose for MCP-PMTs and Filter

0% – 3.5% @ 3 Gy and 0.5% – 4.5% @ 30 Gy depending on filter

Simulated Charged Hadron Rate for MCP-PMTs and PCBs

19/19