Осцилляции и *СР* нарушение в распадах *D* мезонов

В.С. Воробьев

ИЯФ СО РАН

Совещание по физической программе Супер *с*-*т* фабрики 19 декабря 2017, Новосибирск

Charm mixing formalism

\mathcal{CP} violation parameters

Charm mixing within the Standard Model

HFAG

Charm production

Parameter	Belle+BaBar (1.5 ab^{-1})	Belle II (50 ab ⁻¹)	LHCb (5 fb ⁻¹)	LHCb (50 fb ⁻¹)	Super c - τ (10 ab ⁻¹)
Decay time	~				X
Incoherent decays	\sim		\checkmark		
Coherent decays	>	<	×		\checkmark
$N(D^0 \rightarrow K^- \pi^+)$ untagged, 10^6				40000 [1]	100
$N(D^{*+} \to D^0 \pi^+, D^0 \to K^- \pi^+), 10^6$	2.5 [2]	140 [2]	100 [1]	7000 [1]	20*
$N(D^+ \to K^- \pi^+ \pi^+), 10^6$	1.2 [4]	40	150 [1]	11000 [1]	200
$N(D_s^+ \rightarrow \varphi \pi^+), 10^6$	0.5	17	13 [1]	1000 [1]	40

* Expected yield of $\psi(3770) \rightarrow D^0 \overline{D}{}^0 \rightarrow (K^- \pi^+)(K^+ \pi^-)$ is shown for SCTF

[1] LHCb Collaboration, Eur. Phys. J. C73, 2373 (2013)
«Implications of LHCb measurements and future prospects»
[2] Physics at Super B Factory, arXiv:1002.5012 [hep-ex]
[3] CLEO Collaboration, Phys. Rev. D86, 112001 (2012)
[4] Phys. Rev. Lett. 102, 221802 (2009)

- $\sigma(pp \to D^0 X) @ 13 \text{ TeV} \approx 2 \text{ mb}$
- $\sigma(e^+e^- \rightarrow c\bar{c}) @ \Upsilon(4S) \approx 1.3 \text{ nb}$
- $\sigma(e^+e^- \to c\bar{c}) @ \psi(3770) \approx 6 \text{ nb}$

Charm mixing

Charm mixing observables

CF and DCS D decays

$$\Gamma(D^{0}(t) \to f_{\text{WS}}) = e^{-\tau} |A_{f}|^{2} \left[R_{f}^{2} + R_{f} y' \tau + \frac{1}{2} R_{M} \tau^{2} \right]$$

$$y' \equiv y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$$
Phys. Rev. Lett. 98, 211802 (2007) (BaBar)
Phys. Rev. Lett. 112, 111801 (2014) (Belle)
Phys. Rev. D95, 052004 (2017) (LHCb)
$$x, \quad y, \quad \delta_{K\pi} \quad \text{Coherent}$$
Phys. Rev. D86, 112001 (2012) (CLEO-c)
Phys. Lett. B 734, 277 (2014) (BESIII)
Phys. Rev. D73, 034024 (2006) (Asner, Sun)

Dalitz analysis

Direct sensitivity to x and y

- Incoherent: model-dependent
 - Phys. Rev. Lett. 105, 081803 (2010) (BaBar)
 - Phys. Rev. D89, 091103 (2014) (Belle)
- Incoherent with external coherent input
 - JHEP 04, 033 (2016) (LHCb)
- Coherent: model-independent measurement

Dalitz analysis of $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ decay

The method

- Time-dependent Dalitz analysis $\mathcal{P}_D(t, m_+^2, m_-^2) \approx \Gamma e^{-\Gamma t} \left[|\mathcal{A}_D|^2 - \Gamma t \operatorname{Re} \left(\mathcal{A}_D^* \mathcal{A}_{\overline{D}}(y + ix) \right) \right]$
- Sensitivity due to the strong phase variation over the Dalitz plot
- $\mathcal{A}(m_+^2, m_-^2)$ from $D^0 \to K_S^0 \pi^+ \pi^-$ decay model

[1] Phys. Rev. Lett. 105, 081803 (2010) (BaBar)[2] Phys. Rev. D89, 091103 (2014) (Belle)

Time-dependent

Model-independent Dalitz analysis

[1] Phys. Rev. D68, 054018 (2003)
[2] Phys. Rev. D82, 034033 (2010)
[3] Phys. Rev. D82, 112006 (2010)
[4] JHEP 04, 033 (2016)

Future precision

- 1. "Implications of LHCb measurements and future prospects", Eur. Phys. J. C73, 2373 (2013)
- 2. "Physics at Super *B* Factory", arXiv:1002.5012 [hep-ex]
- 3. A. Bondar et al., Phys. Rev. D82, 034033 (2010)

Parameter	Belle II $@ 50 ab^{-1}$	LHCb @ 50 fb ⁻¹	Super c - τ @ 10 ab ⁻¹		
	WS se	mileptonic			
R _M	$\sim 5 \times 10^{-5}$	$O(5 \times 10^{-7})$ [1]			
	CF and D	OCS D decays			
<i>y</i> , 10 ⁻⁴	X	×	2		
y', 10 ⁻⁴	16 (syst.) [2]	$\mathcal{O}(1)$ [1]			
$\cos \delta_{K\pi}$	X	×	2×10^{-3}		
$R_D, 10^{-5}$	10	$\mathcal{O}(0.3)$	1		
	D to \mathcal{CP} eigenstates				
$y_{\mathcal{CP}}$, 10^{-4}	10 (syst.) [2]	0.4 [1]	4		
Dalitz analysis					
<i>x</i> , 10 ⁻⁴	10 (syst.) [2]	1.7 [1]	~ 1 [3]		
<i>y</i> , 10 ⁻⁴	7 (syst.) [2]	1.9 [1]	~ 1 [3]		

Quantum correlations

Measurements using quantum correlations I

Correlations with C = -1

 $\Gamma(i,j) \propto |\langle i|D_2\rangle \langle j|D_1\rangle - \langle i|D_1\rangle \langle j|D_2\rangle|^2 + \mathcal{O}(x^2,y^2)$

Average strong phase differences

• Measurement using
$$D^0 \overline{D}{}^0 \rightarrow 2(K_S^0 \pi^+ \pi^-)$$
 [1

$$M_{ij} \propto K_i K_{-j} + K_{-i} K_j - 2 \sqrt{K_i K_{-j} K_{-i} K_j} \left(C_i C_j + S_i S_j\right)$$

- Existing results
 - $D \rightarrow K_S^0 \pi^+ \pi^-$ [2]
 - $D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ [3]
 - $D \rightarrow K_S^0 \pi^- \pi^+ \pi^0[4]$
- Applications
 - Charm mixing
 - CKM angle γ in $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K_S^0 \pi^+ \pi^-$

 $N_i \propto K_i + r_B^2 K_{-i} + 2\sqrt{K_i K_{-i}} (x_B C_i + y_B S_i)$

• CKM angle β in $B^0 \rightarrow D^0 h^0$, $D \rightarrow K_S^0 \pi^+ \pi^-$

Measurements using quantum correlations II

Coherence factors and average strong phase differences [1]

$$R_{f}e^{i\xi_{f}} \equiv \frac{\int \mathcal{A}_{f}^{*}(\boldsymbol{x})\bar{\mathcal{A}}_{f}(\boldsymbol{x})\mathrm{d}\boldsymbol{x}}{\int \left|\mathcal{A}_{f}(\boldsymbol{x})\right|^{2}\mathrm{d}\boldsymbol{x}\cdot\int \left|\bar{\mathcal{A}}_{f}(\boldsymbol{x})\right|^{2}\mathrm{d}\boldsymbol{x}}$$

- Measurement using $D^0 \overline{D}^0 \to FG$ $\Gamma(FG) = \Gamma_0 \left[P_F \overline{P}_G + \overline{P}_F P_G - 2R_F R_G \sqrt{P_F \overline{P}_G \overline{P}_F P_G} \cos(\xi_F - \xi_G) \right]$
- Existing results

•
$$D^0 \to K^- \pi^+ (R_{K\pi} = 1, \xi_{K\pi} \equiv \delta_{K\pi})$$
 [2,3]

- $D^0 \to K^- \pi^+ \pi^0$ [4]
- $D^0 \to K^- \pi^+ \pi^+ \pi^-$ [4,5]
- CKM angle γ in $B^{\pm} \to DK^{\pm}$ (ADS-like method) $\Gamma(B^{\mp} \to DK^{\mp}) \propto r_B^2 + r_D^2 + 2r_B r_D R_f \cos(\delta_B + \xi_f \mp \gamma)$

Phys. Rev. D68, 033003 (2003)
 Phys. Rev. D86, 112001 (2012)
 Phys. Lett. B734, 227 (2014)
 Phys. Rev. D80, 031105(R) (2009)

[5] Phys. Lett. B757, 520 (2016)
[6] Phys. Lett. B740, 1 (2015)
[7] arXiv: 1710.10086 [hep-ex]

 $F_{+} \equiv \frac{N^{+}}{N^{+} + N^{-}}, \qquad N^{\pm} \equiv \frac{M^{\pm}}{S^{\pm}},$ where S^{\pm} is number of ST $f_{CP\pm}$ events and M^{\pm} is number of DT $(f_{CP\mp} f)$ events

 \mathcal{CP} content of multibody decays

- Existing results
 - $F_+(\pi^+\pi^-\pi^0) = 0.968 \pm 0.017 \pm 0.006$ [6]
 - $F_+(K^+K^-\pi^0) = 0.731 \pm 0.058 \pm 0.021$ [6]
 - $F_+(K_S^0\pi^+\pi^-\pi^0) = 0.238 \pm 0.012 \pm 0.012$ [7]
- CKM angle γ in $B^{\pm} \rightarrow DK^{\pm}$ (GLW-like method)
 - $\Gamma(B^{\mp} \to DK^{\mp}) \propto 1 + r_B \cos(\delta_B \mp \gamma) \left(2F_+ 1\right)$

Measurements using quantum correlations III

Access to coherent $C = \pm 1$ and non-coherent decays $e^+e^- \rightarrow \psi(4040) \rightarrow D\overline{D}^*$ Coherent $\mathcal{C} = -1: D^0 \overline{D}^{*0} \to D^0 \overline{D}^0 \pi^0$ $M_{ij}^{-} = K_i K_{-j} + K_{-i} K_j - 2 \left(K_i K_{-j} K_{-i} K_j (C_i C_j + S_i S_j) \right)$ Coherent $\mathcal{C} = +1: D^0 \overline{D}^{*0} \to D^0 \overline{D}^0 \gamma$ $M_{ij}^{+} = K_i K_{-j} + K_{-i} K_j - 2 \sqrt{K_i K_{-j} K_{-i} K_j (C_i C_j + S_i S_j)}$ $+2K_{i}\sqrt{K_{i}K_{-i}}(yC_{i}-xS_{i})+2K_{-i}\sqrt{K_{i}K_{-i}}(yC_{i}+xS_{i})$ $+2K_i \left\langle K_j K_{-j} (yC_j - xS_j) + 2K_{-i} \right\rangle K_j K_{-j} (yC_j + xS_j)$ Incoherent $D^-D^{*+} \rightarrow D^-D^0\pi^+$ $K_i' = K_i + \sqrt{K_i K_{-i}} (yC_i + xS_i)$

[1] Phys. Rev. D82, 034033 (2010)[2] Phys. Rev. D80, 072001 (2009)

Measurement of the charm mixing and the phase parameters in a single experiment

\mathcal{CP} violation

${\cal CP}$ violation observables

- Incoherent: model-dependent
- Incoherent with external coherent input
- Coherent: model-independent measurement

Energy test

Dalitz analysis of $D^0 \to K^0_S \pi^+ \pi^-$

Future precision			
Parameter	Belle II @ 50 ab ⁻¹	Super <i>c</i> - <i>τ</i> @ 10 ab ⁻¹	
$\left \frac{q}{p}\right $	0.05 [2]	~ 0.01 [3]	
$\arg\left(\frac{q}{p}\right)$	3°[2]	~ 1°[3]	

[1] Phys. Rev. D89, 091103(R) (2014) (Belle)
[2] arXiv:1002.5012 [hep-ex]
[3] A. Bondar et al., Phys. Rev. D82, 034033 (2010)

Direct \mathcal{CP} violation in charm

Direct CP violation (At least) two different coherent amplitudes with different weak and strong phases generates direct CP violation $A(D \rightarrow f) = a_1 e^{i(\varphi_1 + \delta_1)} + a_2 e^{i(\varphi_2 + \delta_2)}$ where φ_i - weak phases and δ_i - strong phases

 $\mathcal{A}_{CP} \propto \sin \Delta \varphi \sin \Delta \delta$

A charm(ing) feature

long-distance dynamics is important in charm decays: re-scattering leads to the complex connections between the worlds of hadrons and quarks [I. Bigi]

- SM expectations
 - Zero weak phase in CF and DCS transitions
 - Very small weak phases in SCS transitions $\mathcal{A}_{CP} < 10^{-3}$
- It is important to probe regional asymmetries in multibody decays

Direct CP violation in D^{\pm} decays (some examples)

* the effects due to kaon system substracted

$\mathcal{A}_{\mathcal{CP}}\left(\% ight)$					
Mode	CLEO-c	B factories	LHCb	LHCb 50 fb^{-1}	
$D^+ \to K^0_S K^+$	$-0.2 \pm 1.5 \pm 0.9$ [1]	$0.08 \pm 0.28 \pm 0.14^{*}$ [3]	$0.03 \pm 0.17 \pm 0.14^{*}$ [4]	0.01 [5]	
$D^+ \to \pi^+ \pi^0$	+2.9 ± 2.9 ± 0.3 [1]				
$D^+ \to K^+ \pi^0$	$-3.5 \pm 10.7 \pm 0.9$ [1]				
$D^+ \to \pi^+ \eta$	$-2.0 \pm 2.3 \pm 0.3$ [1]	$+1.74 \pm 1.13 \pm 0.19$ [2]			
$D^+ o \pi^+ \eta'$	$-4.0 \pm 3.4 \pm 0.3$ [1]	$-0.12 \pm 1.12 \pm 0.17$ [2]			

Belle II and Super c- τ can achieve the precision level of $10^{-3} \div 10^{-4}$

CLEO-c charge asymmetry [1]		
$K^{\pm}: \pm 0.8\%$,	π^{\pm} : $\pm 0.3\%$	

[1] Phys. Rev. D81, 052013 (2010) (CLEO-c 818 pb⁻¹)
[2] Phys. Rev. Lett. 107, 221801 (2011)
[3] JHEP 02, 098 (2013)
[4] JHEP 1410, 025 (2014) (LHCb 3 fb⁻¹)
[5] Eur. Phys. J. C73, 2373 (2013)

Techniques for multibody decays

Regional phase space test

- Binned [2] $D^0 \to K^+ K^- \pi^+ \pi^-, \qquad D^0 \to \pi^+ \pi^- \pi^+ \pi^-$
- Binned and model-independent unbinned [3] $D^+ \to \pi^- \pi^+ \pi^+$
- «Energy test» [4] $D^0 \rightarrow \pi^- \pi^+ \pi^0$

[1] arXiv:hep-ex/0309021
[2] Phys. Lett. B726, 623 (2013) (LHCb 1 fb⁻¹)
[3] Phys. Lett. B728, 585 (2014) (LHCb 1 fb⁻¹)
[4] Phys. Lett. B740, 158 (2015) (LHCb 2 fb⁻¹)
[5] JHEP 10, 005 (2014) (LHCb 3 fb⁻¹)

Выводы

- 1. Супер *с*-*т* фабрика позволит измерить
 - Параметры x и y осцилляций D мезонов с точностью $\sim 10^{-4}$
 - Эта точность находится на уровне ожидаемых результатов Belle II и LHCb
 - Прямое \mathcal{CP} нарушение в распадах $D_{(s)}$ мезонов с точностью $10^{-3} \div 10^{-4}$
 - Эта точность находится на уровне ожидаемых результатов Belle II
 - LHCb может получить более точные результаты для некоторых процессов
- 2. Квантовые корреляции дают уникальную возможность для измерения различных адронных параметров
 - (Средние) разности фаз $\delta_{K\pi}, \delta_{K\pi\pi}, ...$
 - Фазовые параметры *C_i* и *S_i* для модельно-независимого анализа многочастичных распадов
 - Факторы когерентности многочастичных распадов
 - Доли СР в амплитудах многочастичных распадов
- 3. Эти адронные параметры необходимы для изучения физики *B* и *D* мезонов в экспериментах Belle II и LHCb
 - Модельно-независимое измерение СКМ фаз β и γ
 - Модельно-независимое изучение осцилляций *D* мезонов

Backup

D^0 decay rates

$$\begin{aligned} \begin{array}{c} & & \lambda_{f} \equiv \frac{q}{p} \cdot \frac{\mathcal{A}_{f}}{\mathcal{A}_{f}} \\ & & \lambda_{f} \equiv \frac$$

Coherent (at rest)

$$e^{+}e^{-} \rightarrow D^{(*)0}\overline{D}^{(*)0}, \quad \mathcal{C}+:D^{0}\overline{D}^{0}\gamma, \quad \mathcal{C}-:D^{0}\overline{D}^{0}(\pi^{0})$$
$$|\langle ij|\mathcal{H}|D^{0}\overline{D}^{0}\rangle|^{2} \propto |\mathcal{A}_{i}|^{2} |\mathcal{A}_{j}|^{2} [|\zeta_{\mathcal{C}}|^{2} + (1+\mathcal{C})(x\operatorname{Im}(\xi_{\mathcal{C}}^{*}\zeta_{\mathcal{C}}) - y\operatorname{Re}(\xi_{\mathcal{C}}^{*}\zeta_{\mathcal{C}}))] + \mathcal{O}(x^{2}, y^{2})$$
$$\xi_{\mathcal{C}} \equiv \frac{p}{q}(1+\mathcal{C}\lambda_{i}\lambda_{j}), \quad \zeta_{\mathcal{C}} \equiv \frac{p}{q}(\lambda_{j}+\mathcal{C}\lambda_{i})$$

The CKM matrix

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 \left(\rho - i\eta + \frac{i}{2}\eta\lambda^2\right) \\ -\lambda & 1 - \frac{\lambda^2}{2} - i\eta A^2 \lambda^4 & A\lambda^2 (1 + i\eta\lambda^2) \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^6) \\ \lambda \approx 0.225, \quad A \approx 0.81, \quad \bar{\rho} \approx 0.12, \quad \bar{\eta} \approx 0.35 \end{pmatrix}$$

\mathcal{CP} violation observables

$$\begin{split} A_{\Gamma} &\approx \eta_{\mathcal{CP}} \left[\frac{1}{2} (A_m + A_d) y \cos \varphi - x \sin \varphi \right] \\ y_{\mathcal{CP}} &\approx \eta_{\mathcal{CP}} \left[\left(1 - \frac{1}{8} A_m^2 \right) y \cos \varphi - \frac{1}{2} A_m x \sin \varphi \right] \end{split}$$

CF and DCS D^0 decays $(D^0 \rightarrow K^{\mp} \pi^{\pm})$

CLEO-c [1]

• 0.82 fb⁻¹ @ $\psi(3770)$, fit of 261 yields $y = (4.2 \pm 2.0 \pm 1.0)\%$ $R_D = (0.533 \pm 0.107 \pm 0.045)\%$ $\cos \delta_{K\pi} = +0.81 \pm 0.22 \pm 0.07$ $\sin \delta_{K\pi} = -0.01 \pm 0.41 \pm 0.04$

BESIII [2]

- 2.92 fb⁻¹ @ $\psi(3770)$
- $y \text{ and } R_D$ taken as an external input $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$

[1] Phys. Rev. D86, 112001 (2012)
[2] Phys. Lett. B 734, 277 (2014)
[3] Eur. Phys. J. C73, 2373 (2013)
[4] arXiv:1002.5012 [hep-ex]

Correlations with $J^{PC} = 1^{--}$

 $\Gamma(i,j) \propto |\langle i|D_2\rangle \langle j|D_1\rangle - \langle i|D_1\rangle \langle j|D_2\rangle|^2 + \mathcal{O}(x^2,y^2)$

Future precision

Parameter	Belle II @ 50 ab ⁻¹	LHCb @ 50 fb ⁻¹	Super <i>c</i> - τ @ 10 ab ⁻¹
<i>y</i> , 10 ⁻⁴	* 🗙	* 🗙	2
y', 10 ⁻⁴	±4 ± 16 [4]	$\mathcal{O}(1)$ [3]	
$\cos \delta_{K\pi}$	X	X	2×10^{-3}
$R_D, 10^{-5}$	10	$\mathcal{O}(0.3)$	1
$x^{*}x$ and y can be measured in multibody decays, see below			

Time-integrated

D^0 decays to \mathcal{CP} eigenstates

Time-integrated

-0.1

-0.05

0

0.05

U_{miss} (GeV)

0.1

0.05 0.1

U_{miss} (GeV)

28

-0.1 -0.05

0

[1] Phys. Lett. B744, 339 (2015)
[2] arXiv:1002.5012 [hep-ex]
[3] Eur. Phys. J. C73, 2373 (2013)

D^0 decays to \mathcal{CP} eigenstates

3 29

t (ps)

[2] Phys. Rev. D87, 012004 (2013)

[3] Phys. Rev. Lett. 98, 211803 (2007)

CF and DCS D^0 decays $(D^0 \rightarrow K^{\mp} \pi^{\pm})$

Time-dependent

\mathcal{CP} violation in $D^0 \to h^+ h^-$

Phys. Rev. Lett. 98, 211803 (2007) (Belle)
 Phys. Rev. Lett. 100, 061803 (2007) (BaBar)
 Phys. Rev. D87, 012004 (2013) (BaBar)
 JHEP 04, 129 (2012) (LHCb)
 JHEP 07, 041 (2014) (LHCb)
 JHEP 04, 043 (2015) (LHCb)
 Phys. Rev. Lett. 116, 191601 (2016) (LHCb)

An example: $D^+ \rightarrow \pi^+ \eta^{(\prime)}$

Belle PRL 107, 221801 (2011)

- 791 fb⁻¹
- $N(\pi^+\eta) = 6476, N(\pi^+\eta') = 6023$ $\mathcal{A}_{CP}(\pi^+\eta) = (+1.74 \pm 1.13 \pm 0.19)\%$ $\mathcal{A}_{CP}(\pi^+\eta') = (-0.12 \pm 1.12 \pm 0.17)\%$

Naive extrapolation:

- Belle II @ 50 ab^{-1} : $\sigma = 0.15$ %
- Super $c \tau @ 10 ab^{-1} : \sigma = 0.02 \%$

CLEO-c PRD 81, 052013 (2010) • 0.818 fb⁻¹ @ 3774 MeV, single tag • $N(\pi^+\eta) = 2940, N(\pi^+\eta') = 1037$ $\mathcal{A}_{CP}(\pi^+\eta) = (-2.0 \pm 2.3 \pm 0.3)\%$ $\mathcal{A}_{CP}(\pi^+\eta') = (-4.0 \pm 3.4 \pm 0.3)\%$ 200ED $^{+} \rightarrow \pi^{+} \eta$ $D^+ \rightarrow \pi^+ \eta$ 600 160 400 120 200 **€** 1.83 1.85 1.87 1.89 1.83 1.85 1.87 1.89

Direct \mathcal{CP} violation in D^0 decays

$\mathcal{A}_{\mathcal{CP}}\left(\% ight)$				
Mode	CLEO-c	B factories	LHCb	
$D^0 \to K^- \pi^+$	$+0.3 \pm 0.3 \pm 0.6$ [1]			
$D^0 \to K^- \pi^+ \pi^0$	$+0.1 \pm 0.3 \pm 0.4$ [1]			
$D^0 \rightarrow K^+ \pi^- \pi^0$		-0.6 ± 5.3 [3]		
$D^0 \to K^- 2\pi^+ \pi^-$	$+0.2 \pm 0.3 \pm 0.4$ [1]			
$D^0 \to K^+ 2\pi^- \pi^+$		-1.8 ± 4.4 [3]		
$D^0 \to \pi^- \pi^+ \pi^0$		$+0.31 \pm 0.41 \pm 0.17$ [5]	Energy test [4]	

[1] Phys. Rev. D81, 052013 (2010) (CLEO-c 818 pb⁻¹)
[2] Phys. Rev. D89, 072002 (2014) (CLEO-c 818 pb⁻¹)
[3] Phys. Rev. Lett. 95, 231801 (2005) (Belle 281 fb⁻¹)

[4] Phys. Lett. B740, 158 (2015) (LHCb)
[5] Phys. Rev. D78, 051102 (2008) (BaBar 385 fb⁻¹)

Direct \mathcal{CP} violation in D^{\pm} decays II

$\mathcal{A}_{\mathcal{CP}}\left(^{\mathit{0}\!\mathit{0}} ight)$				
Mode	CLEO-c	B factories	LHCb	LHCb 50 fb
$D^+ \rightarrow K^- \pi^+ \pi^+$	$-0.3 \pm 0.2 \pm 0.4$ [1]			
$D^+ \to K^- \pi^+ \pi^+ \pi^0$	$-0.3 \pm 0.6 \pm 0.4$ [1]			
$D^+ \rightarrow K^- K^+ \pi^+$	$-0.1 \pm 0.9 \pm 0.4$ [1]	$+0.37 \pm 0.30 \pm 0.15$ [4]		5×10^{-5}
$D^+ \rightarrow K_S^0 \pi^+$	$-1.1 \pm 0.6 \pm 0.2$ [1]	$-0.36 \pm 0.09 \pm 0.07$ [3]		
$D^+ \to K^0_S \pi^+ \pi^0$	$-0.1 \pm 0.7 \pm 0.2$ [1]			
$D^+ \to K^0_S \pi^+ \pi^+ \pi^-$	$+0.0 \pm 1.2 \pm 0.3$ [1]			
$D^+ o \mu^+ \nu_\mu$	8 ± 8 [2]			

[1] Phys. Rev. D89, 072002 (2014) (CLEO-c 818 pb⁻¹)
[2] Phys. Rev. D78, 052003 (2008) (CLEO-c 818 pb⁻¹)
[3] Phys. Rev. Lett. 109, 021601 (2012) (Belle 977 fb⁻¹)

[4] Phys. Rev. D87, 052010 (2013) (BaBar 476 fb⁻¹)

Direct \mathcal{CP} violation in D_s decays I

* the effects due to kaon system substracted

$\mathcal{A}_{\mathcal{CP}}\left(\% ight)$				
Mode	CLEO-c [1]	B factories	LHCb	
$D_s \to K_S^0 K^+$	$2.6 \pm 1.5 \pm 0.6$	$-0.28 \pm 0.23 \pm 0.24^{*}$ [2]		
$D_s \to K^- K^+ \pi^+$	$-0.5 \pm 0.8 \pm 0.4$ [2]			
$D_s \to K_S^0 K^+ \pi^0$	$-1.6 \pm 0.6 \pm 1.1$ [2]			
$D_s \to K^0_S K^0_S \pi^+$	3.1 ± 5.2 ± 0.6 [2]			
$D_s \to K^- K^+ \pi^+ \pi^0$	0.0 ± 2.7 ± 1.2 [2]			
$D_s \to K_S^0 K^+ \pi^+ \pi^-$	$-5.7 \pm 5.3 \pm 0.9$ [2]			
$D_s \to K_s^0 K^- \pi^+ \pi^+$	4.1 ± 2.7 ± 0.9 [2]			
$D_s \to \pi^+ \pi^+ \pi^+$	$-0.7 \pm 3.0 \pm 0.8$ [2]			
$D_s \to \mu \nu$	$+4.8 \pm 6.1$ [3]			

[1] Phys. Rev. D88, 032009 (2013) (CLEO-c 586 pb⁻¹ @ $D_s^*D_s$)

[2] Phys. Rev. D87, 052012 (2013) (BaBar 469 fb^{-1})

[3] Phys. Rev. D79, 052001 (2009) (CLEO-c 600 pb⁻¹ @ $D_s^*D_s$)

Direct \mathcal{CP} violation in D_s decays II

* the effects due to kaon system substracted

$\mathcal{A}_{\mathcal{CP}}\left(\% ight)$				
Mode	CLEO-c	B factories	LHCb	
$D_s \to \pi^+ \pi^0 \eta'$	$-0.4 \pm 7.4 \pm 1.9$ [2]			
$D_s \to K^+ \pi^+ \pi^-$	$+4.5 \pm 4.8 \pm 0.6$ [2]			
$D_s \to K_S^0 \pi^+$	16.3 ± 7.3 ± 0.3 [1]	$+0.3 \pm 2.0 \pm 0.3^{*}$ [3]	$+0.38 \pm 0.46 \pm 0.17$ [4]	
$D_s \to K^+ \pi^0$	$-26.6 \pm 23.8 \pm 0.9$ [1]			
$D_s \to K^+ \eta$	9.3 ± 15.2 ± 0.9 [1]			
$D_s \to K^+ \eta'$	$6.0 \pm 18.9 \pm 0.9$ [1]			
$D_s \to \pi^+ \eta$	$1.1 \pm 3.0 \pm 0.6$ [2]			
$D_s o \pi^+ \eta'$	$-2.2 \pm 2.2 \pm 0.6$ [2]			

[1] Phys. Rev. D81, 052013 (2010) (CLEO-c $0.586 \text{ pb}^{-1} @ D_s^*D_s$) [4] JHEP 1410, 025 (2014) (LHCb 3 fb⁻¹) [2] Phys. Rev. D88, 032009 (2013) (CLEO-c $0.586 \text{ pb}^{-1} @ D_s^*D_s$) [3] Phys. Rev. D87, 052012 (2013) (BaBar 469 fb⁻¹)