
Аннотация

Содержание

1	Введение	2
2	Измерение масс барионов	5

1 Введение

 Λ^0

$$(ud - du)s/\sqrt{2}; J = 1/2^+I = 0$$

Масса 1115.683 \pm 0.006 МэВ.

Время жизни $c\tau = 7,8$ см

Основные моды распада: $p\pi^-$ 2/3 $n\pi^0$ 1/3

 Σ^+

$$uus; J = 1/2^+I = 1$$

Масса 1189.37 \pm 0.07 МэВ.

Время жизни $c\tau=2,4$ см

Основные моды распада: $p\pi^0$ 1/2 $n\pi^+$ 1/2.

 $p\gamma~10^{-3}$

 Σ^0

$$(ud + du)s/\sqrt{2}; J = 1/2^+I = 1$$

Macca 1192.64 \pm 0.024 МэВ.

Время жизни $c\tau=0$ см

Основные моды распада: $\Lambda^0 \gamma$ 1

 Σ^-

$$dds; J = 1/2^+I = 1$$

Масса 1197.44 \pm 0.029 МэВ.

Время жизни $c\tau=4.4~\mathrm{cm}$

Основные моды распада: $n\pi^-$ 1

 $uss; J = 1/2^+I = 1/2$

Масса 1314.86 ± 0.2 МэВ.

Время жизни $c\tau=8.7~\mathrm{cm}$

Основные моды распада: $\Lambda^0\pi^0$ 1

 Ξ^-

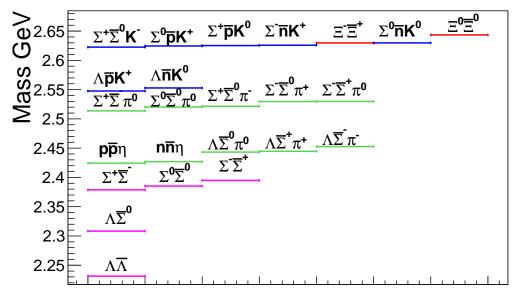
 $dss; J = 1/2^+I = 1/2$

Масса 1321.71 \pm 0.07 МэВ.

Время жизни $c\tau = 4.9$ см

Основные моды распада: $\Lambda^0\pi^-$ 1

 Ω^{-}


 $sss; J = 3/2^+I = 0$

Масса 1672.45 ± 0.29 МэВ.

Время жизни $c\tau=2.4~\mathrm{cm}$

Основные моды распада: $\Lambda^0 K^-$ 2/3 $\Xi^- \pi^0$ 1/4 $\Xi^0 \pi^+$ 1/11

Baryon

1 MASS

The fit uses Λ , Σ^+ , Σ^0 , Σ^- mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN COMMENT	
1115.683±0.006 OUR FI	Т				
1115.683±0.006 OUR A	/ERAGE				
$1115.678 \pm 0.006 \pm 0.006$	20k	HARTOUNI	94	SPEC <i>pp</i> 27.5 GeV/ <i>c</i>	
$1115.690 \pm 0.008 \pm 0.006$	18k	$^{ m 1}$ HARTOUNI	94	SPEC <i>pp</i> 27.5 GeV/ <i>c</i>	
ullet $ullet$ We do not use the	following	data for averages,	fits,	limits, etc. • • •	
1115.59 ± 0.08	935	HYMAN	72	HEBC	
1115.39 ± 0.12	195	MAYEUR	67	EMUL	
1115.6 \pm 0.4		LONDON	66	HBC	
1115.65 ± 0.07	488	² SCHMIDT	65	HBC	
1115.44 ± 0.12		³ BHOWMIK	63	RVUE	

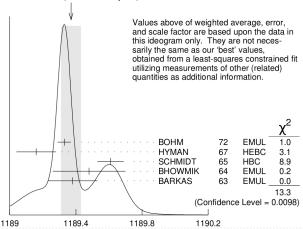
 $^{^1}$ We assume $\it CPT$ invariance: this is the $\overline{\it \Lambda}$ mass as measured by HARTOUNI 94. See below for the fractional mass difference, testing CPT.

The SCHMIDT 65 masses have been reevaluated using our April 1973 proton and K^{\pm} and π^{\pm} masses. P. Schmidt, private communication (1974).

The mass has been raised 35 keV to take into account a 46 keV increase in the proton mass and an 11 keV decrease in the π^{\pm} mass (note added Reviews of Modern Physics **39** 1 (1967)).

2 Измерение масс барионов

Σ^+ MASS


The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN COMMENT
1189.37±0.07 OUR	FIT Error i	includes scale facto	or of 2	2.2.
1189.37±0.06 OUR	AVERAGE	Error includes sca	le fact	tor of 1.8. See the ideogram
below.				
1189.33 ± 0.04	607	¹ BOHM	72	EMUL
1189.16 ± 0.12		HYMAN	67	HEBC
$1189.61\!\pm\!0.08$	4205	SCHMIDT	65	HBC See note with Λ mass
$1189.48\!\pm\!0.22$	58	² BHOWMIK	64	EMUL
$1189.38 \!\pm\! 0.15$	144	² BARKAS	63	EMUL

 $^{^1}$ BOHM 72 is updated with our 1973 K^- , π^- , and π^0 masses (Reviews of Modern Physics $\bf 45$ S1 (1973)).

This was 11 (1973). These masses have been raised 30 keV to take into account a 46 keV increase in the proton mass and a 21 keV decrease in the π^0 mass (note added 1967 edition, Reviews of Modern Physics **39** 1 (1967)).

$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ***

COURANT 63 and ALFF 65, using $\Sigma^0 \to \Lambda e^+ e^-$ decays (Dalitz decays), determined the Σ^0 parity to be positive, given that J=1/2 and that certain very reasonable assumptions about form factors are true. The results of experiments involving the Primakoff effect, from which the Σ^0 mean life and $\Sigma^0 \to \Lambda$ transition magnetic moment come (see below), strongly support J=1/2.

Σ^0 MASS

The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1192.642 ± 0.024 OUR FIT	•			
• • • We do not use the f	ollowing da	ta for averages, fits	, limits, etc	. • • •
$1192.65\ \pm0.020\pm0.014$	3327	¹ WANG 9	7 SPEC	
				$(p\pi^{-})(e^{+}e^{-})$
¹ This WANG 97 result	is redundan	t with the $arSigma^0$ -/ $arLambda$ ma	ss-differenc	e measurement below.

Σ^- MASS

The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1197.449 ± 0.029 OUR	RFIT Error	includes scale fa	ctor	of 1.1.	
1197.45 ± 0.04 OUR	R AVERAGE	Error includes	scale	factor of	1.2.
1197.417 ± 0.040		GUREV	93	SPEC	Σ^- C atom, crystal diff.
1197.532 ± 0.057		GALL	88	CNTR	Σ^- Pb, Σ^- W atoms
1197.43 ± 0.08	3000	SCHMIDT	65	HBC	See note with Λ mass
• • • We do not use	the following	data for average	es, fit	s, limits,	etc. • • •
$1197.24 \ \pm 0.15$		¹ DUGAN	75	CNTR	Exotic atoms
¹ GALL 88 conclude	s that the D	UGAN 75 mass	needs	to be re	evaluated.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ****

The parity has not actually been measured, but + is of course expected.

We have omitted some results that have been superseded by later experiments. See our earlier editions.

Ξ− MASS

The fit uses the Ξ^- , $\overline{\Xi}^+$, and Ξ^0 masses and the $\Xi^-\overline{\Xi}^+$ mass difference. It assumes that the Ξ^- and $\overline{\Xi}^+$ masses are the same.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1321.71 ± 0.07 OUR F	IT				
$1321.70 \pm 0.08 \pm 0.05$	2478 ± 68	ABDALLAH	06E	DLPH	from Z decays
• • • We do not use t	he following dat	a for averages, fits	s, limi	ts, etc. •	• • •
1321.46 ± 0.34	632	DIBIANCA	75	DBC	4.9 GeV/ $c \ K^- d$
1321.12 ± 0.41	268	WILQUET	72	HLBC	
1321.87 ± 0.51	195	¹ GOLDWASSEF	₹70	HBC	5.5 GeV/c K-p
1321.67 ± 0.52	6	CHIEN	66	HBC	6.9 GeV/ <i>c</i> p p
1321.4 ± 1.1	299	LONDON	66	HBC	
1321.3 ± 0.4	149	PJERROU	65 B	HBC	
1321.1 ± 0.3	241	² BADIER	64	HBC	
1321.4 ± 0.4	517	² JAUNEAU	63 D	FBC	
1321.1 ± 0.65	62	² SCHNEIDER	63	HBC	

 $^{^{1}\,\}mathrm{GOLDWASSER}$ 70 uses $m_{\ensuremath{\Lambda}}=1115.58$ MeV.

 $^{^2}$ These masses have been increased 0.09 MeV because the Λ mass increased.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

The parity has not actually been measured, but + is of course expected.

≡⁰ MASS

The fit uses the Ξ^0 , Ξ^- , and $\overline{\Xi}^+$ masses and the $\Xi^--\Xi^0$ mass difference. It assumes that the Ξ^- and $\overline{\Xi}^+$ masses are the same.

VALUE (MeV)	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
1314.86 ± 0.20 OUR FIT					
$1314.82 \pm 0.06 \pm 0.20$	3120	FANTI	00	NA48	p Be, 450 GeV
• • • We do not use the	following d	ata for averages	, fits,	limits, e	tc. • • •
1315.2 ± 0.92	49	WILQUET	72	HLBC	
1313.4 ± 1.8	1	PALMER	68	HBC	

Ω^- MASS

The fit assumes the Ω^- and $\overline{\Omega}^+$ masses are the same, and averages them together.

VALUE (MeV) 1672.45±0.29 OUR	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1672.43±0.32 OUR					
1673 ± 1	100	HARTOUNI	85	SPEC	80–280 GeV K ⁰ / _I C
1673.0 ± 0.8	41	BAUBILLIER	78	HBC	8.25 GeV/ <i>c</i> K p
1671.7 ± 0.6	27	HEMINGWAY	78	HBC	4.2 GeV/c K ⁻ p
1673.4 ± 1.7	4	$^{ m 1}$ DIBIANCA	75	DBC	4.9 $GeV/c K^- d$
1673.3 ± 1.0	3	PALMER	68	HBC	$K^- p$ 4.6, 5 GeV/ c
1671.8 ± 0.8	3	SCHULTZ	68	HBC	$K^- p 5.5 \text{ GeV}/c$
1674.2 ± 1.6	5	SCOTTER	68	HBC	K^-p 6 GeV/ c
1672.1 ± 1.0	1	² FRY	55	EMUL	
• • • We do not use	the follow	ing data for averag	es, fit	s, limits	, etc. • • •
1671.43 ± 0.78	13	³ DEUTSCH	73	HBC	K^-p 10 GeV/ c
1671.9 ± 1.2	6	³ SPETH	69	HBC	See DEUTSCHMANN 73
1673.0 ± 8.0	1	ABRAMS	64	HBC	$\rightarrow \Xi^{-}\pi^{0}$
1670.6 ± 1.0	1	² FRY	55 B	EMUL	
1615	1	⁴ EISENBERG	54	EMUL	

 $^{^{1}\,\}mathsf{DIBIANCA}$ 75 gives a mass for each event. We quote the average.

 $^{^3}$ Excluded from the average; the Ω^- lifetimes measured by the experiments differ significantly from other measurements.

baryon	word average kev	best measurements kev	year	evnt	SF
Λ	6	6	94	20k	
Σ^+	70	40	72	607	2.2
Σ^0	24	24	97	3327	
Σ^-	29	40	93		
Ξ-	70	94	06	2478	
Ξ0	200	200	00	3120	
Ω -	290	600	78	27	

 $^{^2}$ The FRY 55 and FRY 55B events were identified as \varOmega^- by ALVAREZ 73. The masses assume decay to $\varLambda K^-$ at rest. For FRY 55B, decay from an atomic orbit could Doppler shift the K^- energy and the resulting \varOmega^- mass by several MeV. This shift is negligible for FRY 55 because the \varOmega decay is approximately perpendicular to its orbital velocity, as is known because the \varLambda strikes the nucleus (L.Alvarez, private communication 1973). We have calculated the error assuming that the orbital n is 4 or larger.

Прямое измерение в распаде как на CLEO-с $D^0 \to K^-\pi^-\pi^+\pi^+$. Калибровка импульсов $\psi(2S) \to J/\psi\pi^+\pi^-$. Систематическая ошибка из-за точности масс заряженных каонов. Барионы либо их продукты распада ($\Sigma^0 \to \Lambda \gamma$) будут иметь большие отлеты до 10 см. Возможны даже целые каскады $\Xi^0 \to \pi^0 \Lambda^0 \to \pi^0 [p\pi^+]$. Инвариантная масса будет зависеть от точки(ек) распадов каждого бариона в цепочке. Есть вариант использовать только те события, которые распадаются вне вакуумной камеры. Заряженные барионы при движении в магнитном поле, будут менять импульс в лабораторной системе (а в системе центра инерции и энергию), это нужно будет учитывать при реконструкции массы и точки вылета бариона.

Наличие фотонов в конечном состоянии будет значительно ухудшать разрешение по массе. Относительное импульсное разрешение примерно на порядок лучше, чем разрешение по энергии фотонов. Поиск подходящих мод. $\Sigma^+ \to p \gamma$ с последующей конверсией фотона на вакуумной трубе. Большие проблемы возникают с Σ^- всегда нейтрон (антинейтрон) в конечном состоянии. Для Ξ^0 всегда π^0 в конечном состоянии.

Измерение массы через массу отдачи. Зависимость от измерения энергии. Поиск подходящих реакций. Рождение в ассоциации с протоном заряженными каонами и пионами (допустим $K_S \to \pi^+\pi^-$). Остальные треки летят из места встречи. В значительной мере решается проблема с реконструкцией каскадов распадов. Она остается только для Ω^- .

$$\begin{array}{l} e^+e^- \to \Lambda \bar{p} K^+. \\ e^+e^- \to \Sigma^0 \bar{p} K^+. \\ e^+e^- \to \Sigma^+ \bar{p} K^+ \pi^-. \\ e^+e^- \to \Sigma^- \bar{p} K^+ \pi^+. \\ \text{Только } \psi(2S): \\ e^+e^- \to \Xi^- \bar{p} K^+ K^+. \\ e^+e^- \to \Xi^0 \bar{p} K^+ K^+ \pi^-. \\ e^+e^- \to \Omega^- \bar{p} K^+ K^+ K_S. \text{ Перебор по массе. Лучшее что укладывается в массу } \psi(2S): \\ e^+e^- \to \Omega^- \bar{\Xi}^+ K_S \ e^+e^- \to \Omega^- \bar{\Xi}^0 K^+. \end{array}$$

Зависимость от точности измерения энергии можно уменьшить, паралелльно 'измеряя' аналогичными методами массы протонов и нейтронов.

P начальные e^+e^- , P_B 4-импульс бариона массу которого мы изучаем; \bar{P}_B 4-импульс системы, которая рождается в ассоциации с барионом.

particle	best measurements kev	tecn	year
J/ψ	6	KEDR	15
$\psi(2S)$	10	KEDR	15
D^0	50/22	CLEO-c	14

$$m_B^2 = P^2 - 2P\bar{P}_B + \bar{P}_B^2$$
.

 P_N 4-импульс нуклона массу которого мы хорошо знаем, \bar{P}_N 4-импульс системы которая рождается в ассоциации с нуклоном. Это другие события, но имеющие схожие системы которые рождаются в ассоциации (насколько это возможно).

$$m_N^2 = P^2 - 2P\bar{P}_N + \bar{P}_N^2.$$

Если массу бариона реконструировать следующим образом.

 $\hat{m}_B^2 = m_N^2 - 2P(\bar{P}_B - \bar{P}_N) - \bar{P}_N^2 + \bar{P}_B^2$. То зависимость от точности измерения энергии уменьшается.

$$\frac{dm_B^2}{dE_b} = 4E_b - 2E_B \sim 2E_b > 2E_b$$

$$\frac{d\hat{m}_B^2}{dE_b} = 4(E_N - E_B) \sim 2\frac{m_N^2 - m_B^2 - \bar{m}_N^2 + \bar{m}_B^2}{E_b}; \left| \frac{m_N^2 - m_B^2 - \bar{m}_N^2 + \bar{m}_B^2}{E_b} \right| \ll E_b$$

$$E_1 = \frac{M^2 + m_1^2 - m_2^2}{2M}$$

Здесь E_b - половина энергии в системе центра инерции, E_B энергия бариона в системе центра инерции, $\bar{m}_N^2 = \bar{P}_N^2$ и $\bar{m}_B^2 = \bar{P}_B^2$ средние квадраты масс систем рождающихся в ассоциации с нуклоном и барионом. В этом подходе масса измеряется относительно уже хорошо известной массы протона или нейтрона.

reaction	$J\psi$	$\psi(2S)$	ev
$\Lambda ar{p} K^+ + \mathrm{cc}$	8.6×10^{-4}	10^{-4}	6×10^8
$\Sigma^0 \bar{p} K^+ + \mathrm{cc}$	2.9×10^{-4}	1.6×10^{-5}	2×10^8
$\Lambda^0 ar{\Lambda}^0$	1.9×10^{-3}	3.8×10^{-4}	1.4×10^{9}
E- <u>Ē</u> +	9.7×10^{-4}	2.9×10^{-4}	7×10^8
$\Omega - \bar{\Omega} +$	0	2.4×10^{-4}	3×10^7