PID system based on Focusing Aerogel RICH for Super $c\text{-}\tau$ Factory.

A. Barnyakov

Budker Institute of Nuclear Physics

RICH2018, Moscow, 4th August 2018

- SCTF project
- 2 PID system requirements
- 3 Aerogel
- 4 FARICH method
- 5 Protoypes & beam tests results
- 6 Summary

Super C- τ Factory concept

Charmonia

- Spectroscopy
- Decays

Charmed mesons

Decays

Spectroscopy

• CP-violation

• Light hadron states study

Charmed baryons

- Decays
- CP-violation

$$\sigma(e^+e^- \rightarrow hadr)$$

$\gamma\gamma$ -physics

- Search for *C*-even resonance
- $\quad \quad \bullet \quad \sigma(\gamma\gamma \to \textit{hadr})$

τ -lepton

- Decays
- lacktriangledown CP-violation
- LFV
- Check of lepton universality

Super C- τ Factory concept

Charmonia

- Spectroscopy
- Decays
- Light hadron states study

Charmed baryons

- Decays
- CP-violation

$\sigma(e^+e^- o hadr)$

$\tau\text{-lepton}$

- Decays
- CP-violation
- LFV
- Check of lepton universality

Charmed mesons

- Spectroscopy
- Decays
- CP-violation

$\gamma\gamma$ -physics

- Search for *C*-even resonance
- $\sigma(\gamma\gamma \rightarrow hadr)$

Requirements to Collider

- \bullet Luminosity at least in 50 times more than at BES-III
- Energy spread $(\sigma_E) \sim 1 \text{ MeV}$
- Energy range 2÷5 (7?) GeV
- \bullet Longitudinal e^- polarization at IP

Super C- τ Factory concept

Charmonia

- Spectroscopy
- Decays
- Light hadron states study

Charmed baryons

- Decays
- CP-violation

- Decays
- *CP*-violation
- LFV

 τ -lepton

 Check of lepton universality

- Spectroscopy
- Decays
 CR violation
- CP-violation

$\gamma\gamma$ -physics

- Search for *C*-even resonance
- $\sigma(\gamma\gamma \rightarrow hadr)$

Requirements to Collider

 $\sigma(e^+e^- \rightarrow hadr)$

- Luminosity at least in 50 times more than at BES-III
- Energy spread $(\sigma_E) \sim 1 \text{ MeV}$
- Energy range 2÷5 (7?) GeV
- Longitudinal e[−] polarization at IP

Requirements to Detector $\,$

- Good energy and momenta resolution
- High efficiency of soft track detection
- High PID quality $(\pi/K, \mu/\pi$ -separation is needed)
- Minimal *CP*-asymmetry
- Capability to work with load ~ 300 kHz of physics events

Collider project LAYOUT

Main solutions

- Double ring collider
- Crab waist collisions
- 5 Siberian Snakes $\rightarrow \sim 80\%$ Pol.Lev.
- 2.5 GeV linac

Klystron – 8 + 12 A. Barnyakov

Energy	1.0 GeV	1.5 GeV	2.0 GeV	2.5 GeV
Circumference	813.1 m			
Emittance hor/ver	8 nm/0.04 nm @ 0.5% coupling			
Damping time hor/ver/long	50/50/25 ms	50/50/25 ms 30/30/15 ms		
Bunch length	21 mm	12 mm	10 mm	10 mm
Energy spread	8.7·10-4	11.10-4	9.3·10-4	7.2·10-4
Momentum compaction	8.73·10 ⁻⁴	8.81.10-4	8.82·10-4	8.83·10 ⁻⁴
Damping wiggler field	50 kGs	50 kGs	35 kGs	10 kGs
Synchrotron tune	0.007	0.012	0.009	0.008
RF frequency	499.95 MHz			
Harmonic number	1356			
Particles in bunch	7·10 ¹⁰			
Number of bunches	406 (10% gap)			
Bunch current	4.2 mA			
Total beam current	1.7 A			
Beam-beam parameter	0.135	0.135	0.121	0.097
Luminosity	0.6·10 ³⁵	0.9·10 ³⁵	1.0·10 ³⁵	1.0·10 ³⁵

- 1. cvc
- 2. Inner tracker
- 3. Drift chamber
- 4. PID system
- 5. Calorimeter
- $6. \ \mathrm{SC} \ \mathrm{coil} \ (\mathrm{B}{\sim}1 \ \mathrm{T})$
- 7. Yoke and MU system

Requirements

- π/K -separation from 0.6 to 2.5 GeV/c
- μ/π -separation from 0.4 up to 1.5 GeV/c

π/K -separation

Threshold Cherenkov aerogel counters (n~1.03÷1.05) or TOF ($\sigma_l \leq 50$ ps) are adequate for energy region of SCTF.

μ/π -separation

It is possible to provide separation for momenta below 900 MeV/c with help of combination of TOF counters (with 30 ps time resolution and extra light aerogel ($n\sim1.008$) threshold Cherenkov counters. For momenta above 900 MeV/c Muon system provides some μ/π -separation. More brilliant idea is to use proximity Focusing Aerogel RICH!

Proximity focusing single layer RICH

Proximity focusing multilayer RICH

Lower refractive index provides more $\Delta\Theta_c$. It leads to lower number of photons. To increase N_{phot} without angle resolution degradation focusing is needed.

Main aerogel properties:

- Refraction indices 1.006÷1.20;
- Inner surface 800 m²/g;
- $L_{abs}(400nm)=5\div7 m;$
- L_{sc}(400nm)=4÷6 cm;

Aerogel production in Novosibirsk

- \bullet It started in 1986 (IC&BINP);
- Aerogel for threshold counters:
 - n=1.008 for DIRAC-II (PS-CERN);
 - n=1.05 for KEDR (VEPP-4M);
 - n=1.13 for SND (VEPP-2000).
- Aerogel for RICH counters:
 - n=1.03 for LHCb (LHC-CERN);
 - n=1.05 for AMS-02 (ISS) & CLAS-12 (J-Lab);
- Modern production activity:
 - Blocks dimensions 200×200×30(20) mm;
 - L_{sc} ≥4.5 cm;
 - 2 m²/year aerogel;
 - Multilayer (20÷30) monolithic samples have been producing since 2004.

Aerogel structure

2-layers aerogel with "focus" at $20~\mathrm{cm}$

3-layers aerogel with "focus" at 60 cm

The distribution of refractive index inside the aerogel tile is measured by means of digital x-ray radiography.

4-layers aerogel with "focus" at 20 cm

Beam test at CERN PS/T10 in 2012

- Positive polarity: e^+ , μ^+ , π^+ , K^+ , p
- Momentum: 1÷6 GeV/c
- Trigger: a pair of sc. counters 1.5×1.5 cm^2 in coincidence separated by ~ 3 m
- No external tracking, particle ID, precise timing

Aerogel

- 4-layer
- $n_{max} = 1.046$
- Thickness 37.5 mm
- Focal distance 200 mm

- Sensors: DPC3200-22-44
- 3×3 modules = 6×6 tiles = 24×24 dies $=48\times48$ pixels
- 576 time channels
 - 2304 amplitude (position) channels
- Operation temperature is -40°C to suppress dark count rate
 - Dead time is 720 ns.
 - DCR($\pm 25^{\circ}$ C) ≈ 10 Mcps/sensor single photon detection is not feasible!
 - DCR(-40°C)≈100 kcps/sensor inefficiency is 7%

PDPC-FARICH beam test results

Hit time w.r.t. fitted event time, ns

prototype generation

- Determine critical moments in focusing aerogel production;
- Define optimal photon detector type and producer for SCTF;
- Find solution for readout electronics.

BINP June 2018 test beam results

Tracker based on GEMs $\sigma_r \sim 70 \mu m$; Readout

electronics based on PaDiWa (discriminator) and TRB3 (TDC) from GSI.

- e with E=3 GeV:
- Only central tracks are selected (20x16 mm area);
- Time window ~ 25 ns:
- Cut on energy deposited in NaI calorimeter is aplied;

Impact to angle resolution from pixel size ~ 1.7 mm. To avoid this impact it is possible to use mask:

Impact to angle resolution from pixel size ~ 1.7 mm. To avoid this impact it is possible to use mask:

Impact to angle resolution from pixel size ~1.7 mm.
To avoid this impact it is possible to use mask:

- For prototype based on analogue SiPMs we have 10 matrixes ArrayJ-30035-16P-PCB and 4 matrixes ArrayJ-30020-64P-PCB (SensL).
- Readout board based on NINO-II chip is under development.
- The 32-channel TDC based on Altera Cyclone III FPGA is developed in BINP.

System sketch

Main parameters:

- Focusing aerogel with n_{max} =1.05(1.07?), 4 layers, total thickness 35 mm
- Aerogel area: 14 m²
- Photon detectors (3×3 mm²):
 - Barrel SiPMs (16 m²)
 - Endcap SiPM, MCP PMT? (5 m²)
- 1÷2·10⁶ channels (it depends on pitch)
- Load 0.5÷1.0 MHz/channel
- Cooling system is needed
- To read out the system it is necessary to develop new specific electronics: good time resolution, compactness with minimal power consumption.

- π/K -separation $\geq 4\sigma$ up to 6 GeV/c and μ/π -separation $\geq 5\sigma$ at 1 GeV/c were obtained with prototype based on 4-layer aerogel and 20×20 cm pixel matrix from DPC Philips in 2012.
- SiPM have good tolerance to magnetic fields but radiation tolerance could be not enough for SCTF.
- MCP PMTs could be good candidate to photon detector for endcaps of the system.
- \bullet We need to estimate radiation flux to make right chose of photon detectors.
- FARICH prototype based on PMTs H12700 to investigate of critical moments in focusing aerogel production processes is under operation now. First test beam results are under processing.
- First prototype FARICH based on analogue SiPM matrixes is under development.

Collider limitations

- $W = 2 \div 5 \text{GeV}$
- l_{bunch} 1÷1.8 cm
- $\Delta t^{\rm bunch} 6 \text{ ns}$
- FF: ±10°
- L: 10^{35} cm⁻¹s⁻¹ $\rightarrow 50 \div 300$ kHz event rate
- 1. Vertex detector
- 2. Drift chamber
- 3. PID system
- 4. Calorimeter
- 5. SC coil (B~1 T)
- 6. Yoke and MU chambers

Tasks:

- π/K -separation for P \geqslant 0.6 GeV/c
- μ/π -separation up to P \approx 1.2 GeV/c

Modern state of art

π/K -separation

- TOF: BES-III (MPD NICA) $\sigma_t \sim 100 \text{ ps} \rightarrow 3\sigma/0.9(1.5) \text{ GeV/c}$
- DIRC(BaBar) $\sim 4\sigma$ up to 2.5 GeV/c
- ASHIPH(KEDR)~4σ up to 1.5 GeV/c
 μ/π-separation at P≈1 GeV/c
- Belle~ $2.5 \div 2.8\sigma$

Perspectives:

π/K -separation

- TOF: $\sigma_t \sim 50 \text{ nc} \rightarrow 3\sigma \text{ up to } 1.8(3.0) \text{ GeV/c}$
- \bullet fDIRC ${\sim}3\sigma$ up to 4.25 GeV/c
- FARICH $\geqslant 3\sigma$ up to 6 GeV/c μ/π -separation at P ≈ 1 GeV/c
- FARICH $\sim 5\sigma$

 ${\it FARICH\ idea}$

FARICH motivation

- Detectors for High Energy Physics are developed in steps, including testing of detector prototype on specialized test beams.
- For this purpose an installation for generation of test beams of electrons and gammas was designed at Budker Institute of Nuclear Physics SB RAS (BINP).
- The installation uses the infrastructure of VEPP-4M electron-positron collider.

- ① A special probe is moved into the halo of a primary electron beam of the VEPP-4M collider for generation of Bremsstrahlung gammas.
- 2 These gammas are converted to electron positron pairs on a lead target at the entrance to the experimental hall.
- Selections with a certain momentum are selected using a bending magnet.

The beam parameters		
Energy range	$0.1 \div 3.5\text{GeV}$	
Intensity	$50 \div 100\text{Hz}$	
Energy spread	7.8% for $0.1\mbox{GeV}$ and 2.6% for $3.0\mbox{GeV}$	

Example disposition of equipment in experimental hall (15/03/2018)

Main results

- Effect of focusing was demonstrated:
 - σ_R =1.1 mm for 4-layer aerogel t=30 mm;
 - σ_R =2.1 mm for 1-layer aerogel t=20 mm;

32 CPTA MRS APDs with active pixel size $2.1x2.1 mm^2$

4-layer aerogel focusing at 62 mm ni=1,050 ti=6,2mm n2=1,041 t2=7,0mm n3=1,035 t3=7,7mm n4=1,030 t4=9,7mm Size: 100x100x31mm³ L_{v.}(400nm) = 43mm

Proximity focusing single layer RICH

Proximity focusing multilayer RICH

Simulation results: n=1.05, thickness 3 cm, L=20 cm, QE(MPPC, Hamamatsu), pixel 3×3 mm, pitch 3.2mm.

Simulation results: $n_{max}=1.05$, thickness 3 cm, L=20 cm, 4-layer aerogel.

Super C-τ-Factory

What is the role and place of SCTF at this field?!

Unique advantages of the SCTF

- Threshold production
- Quantum correlated production of neutral D meson pairs
- Double tag technique
- Low multiplicity

CLEOc event topology

Complementarity to LHCb and Belle II

Crucial results from SCTF as input for LHCb and Belle II:

- Absolute branching ratios of charmed hadrons and τ -lepton
- The parameters measured with quantum correlations

Physics cases

- Charm mixing
- Charmed and light hadrons spectroscopy
- Lepton flavour and lepton number violation $(\tau \to \mu \gamma)$
- CP symmetry breaking in charmed hadrons and τ -lepton decays
- Rare charmonia decays
- \bullet Exotic states: multiquark bound states, glueballs, hybrids, \dots

Refractive index

$$n \downarrow \rightarrow \Delta\Theta_c \uparrow$$

Chromatic Dispersion (D_n)

$$D_n \downarrow
ightarrow oldsymbol{\sigma}(\Theta_c) \downarrow$$

 $\Delta\Theta_c$ for π and K.

Bands correspond to chromatic dispersion in $350 \div 700$ nm.

Lower refractive index lead to lower number of Cherenkov photons. To increase N_{phot} without angle resolution degradation focusing is needed. Proximity focusing approach with multilayer aerogel (FARICH) is suggested.

