LHCb status and prospects

Anton Poluektov

University of Warwick, UK

18 December 2017

LHCb collaboration

Flavour physics at colliders

Production of $b\bar{b}$ pairs at threshold. **Pros:**

- Clean environment
- Efficient reconstruction of neutral modes
- Efficient flavour tagging

Contras:

- Low production cross-section (especially B_s^0 and heavier)
- Small boost (artificially by asymmetric energies) ⇒ low decay time resolution

Production of $b\bar{b}$ pairs in $pp \ (p\bar{p})$ collisions: **Pros:**

- Forward production, large boost
- All sorts of b hadrons produced $(B^0, B^+, B_s^0, B_c^+, \Lambda_b^0, \Xi_b, B^*, \ldots)$
- Large production cross-section

Contras:

- Busy events, hard to reconstruct neutral modes.
- Lower flavour tagging power

LHCb experiment

• Covers forward region (maximum of c and b production)

Covers forward region (maximum of c and b production)

Good vertexing: measure B^0 and B^0_s oscillations, reject prompt background

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B^0_s oscillations, reject prompt background
- Particle identification: flavour tagging, misID background

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B^0_s oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B^0_s oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking
- Calorimetry: reconstruct neutrals (π^0, γ) in the final state

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B^0_s oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking
- Calorimetry: reconstruct neutrals (π^0,γ) in the final state
- Efficient trigger, including fully hadronic modes

Anton Poluektov

 3 fb^{-1} in 2011 and 2012 (Run 1, $\sqrt{s} = 7, 8 \text{ TeV}$): Most of results in this talk 2 fb^{-1} in 2015 and 2016 (Run 2, $\sqrt{s} = 13 \text{ TeV}$, higher *b* CS): Analyses ongoing 1.7 fb^{-1} in 2017 at 13 TeV

LHCb Integrated Recorded Luminosity in pp, 2010-2017

 3 fb^{-1} in 2011 and 2012 (Run 1, $\sqrt{s} = 7, 8 \text{ TeV}$): Most of results in this talk 2 fb^{-1} in 2015 and 2016 (Run 2, $\sqrt{s} = 13 \text{ TeV}$, higher *b* CS): Analyses ongoing 1.7 fb^{-1} in 2017 at 13 TeV

Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

- 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm
- 2012: deferred trigger configuration: keep the trigger farm busy between fills

Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

- 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm
- 2012: deferred trigger configuration: keep the trigger farm busy between fills
- Since 2015: split trigger
 - All 1st stage (HLT1) output stored on disk
 - Used for real-time calibration and alignment
 - 2nd stage (HLT2) uses offline-quality calibration
 - 5 kHz of 12 kHz to Turbo stream:
 - Candidates produced by trigger are stored
 - No raw event \Rightarrow smaller event size
 - Used for high-yield channels (charm, J/ψ , ...)

Analysis techniques

Time-dependent measurements

Measure lifetime based on vertex displacement from the primary vertex of pp interaction.

Large boost provides excellent time resolution ($\sigma_t \simeq 45$ fs)

Flavor tagging

Need to identify B flavour at production time (different from flavour at decay time due to oscillations).

Use decay products of the opposite-side B (OS) and π , K associated with same-side B (SS).

Effective tagging power $\epsilon_{\text{tag}}D^2 = 3.7\%$.

CKM measurements

 \mathcal{CP} violation in hadrons (difference of decay probabilities for particle and antiparticle) is described by Cabibbo-Kobayashi-Maskawa model

- Few parameters can explain a vast amount of experimental data
- \blacksquare A single weak phase responsible for \mathcal{CP} violation
- Need interference of several amplitudes for CP violation to occur

Cabibbo-Kobayashi-Maskawa matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \frac{1 - \lambda^2/2}{-\lambda} \frac{\lambda^{3}(\rho - i\eta)}{1 - \lambda^2/2} \frac{\lambda^3}{-\lambda^3} \frac{1 - \lambda^2/2}{-\lambda^2} \frac{\lambda^2}{-\lambda^2}$$

 $\begin{tabular}{|c|c|c|c|c|}\hline \hline Tree: SM only \\ \hline b V_{cb},V_{ub} c,u \\ \hline c,u \hline c,u \\ \hline c,u \hline \hline c,u \\ \hline $c,u$$

($\lambda\simeq 0.22$ is a small parameter, $A, \rho, \eta\sim \mathcal{O}(1)$)

Tree-only quantities: γ , $|V_{ub}|$. SM references, compare with loop-based parameters.

 \mathcal{CP} violation in hadrons (difference of decay probabilities for particle and antiparticle) is described by Cabibbo-Kobayashi-Maskawa model

- Few parameters can explain a vast amount of experimental data
- A single weak phase responsible for \mathcal{CP} violation
- Need interference of several amplitudes for CP violation to occur

Tree-only quantities: γ , $|V_{ub}|$. SM references, compare with loop-based parameters.

Graphical CKM representation: Unitarity Triangle

\mathcal{CP} violation phenomenology

B meson system as an example.

Direct \mathcal{CP} violation

Asymmetry in decay amplitudes: $|\mathcal{A}_f/\overline{\mathcal{A}}_f| \neq 1$

$$A_{\pm} = \frac{\Gamma(B^- \to f^-) - \Gamma(B^+ \to f^+)}{\Gamma(B^- \to f^-) + \Gamma(B^+ \to f^+)}$$

The only possibility for charged mesons.

\mathcal{CP} violation in mixing

If transitions $B^0 \leftrightarrow \overline{B}^0$ are allowed: $|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle$ $|B_H\rangle = p|B^0\rangle - q|\overline{B}^0\rangle$

 $\begin{array}{l} \mathcal{CP} \text{ violation if } |q/p| \neq 1 \\ \text{Can be observed in the asymmetry of} \\ "wrong-sign" decays (\mu^{\pm}\mu^{\pm}) \\ \\ A_{SL} = \frac{1 - |q/p|^4}{1 + |q/p|^4} \end{array}$

Indirect CP violation (in interference)

Interference between $B^0 \to f$ and $B^0 \to \overline{B}^0 \to f$ Even if $|\mathcal{A}_f/\overline{\mathcal{A}}_f| = 1$ and |q/p| = 1, \mathcal{CP} is violated if $\mathcal{Im}\left(\frac{q}{n}\frac{\overline{\mathcal{A}}_f}{\mathcal{A}_f}\right) \neq 0$

Can be measured in the time-dependent asymmetry: $\frac{\Gamma(\overline{B}^0 \to f_{CP}) - \Gamma(B^0 \to f_{CP})}{\Gamma(\overline{B}^0 \to f_{CP}) + \Gamma(B^0 \to f_{CP})} (\Delta t) = S_{f_{CP}} \sin(\Delta m_d \Delta t) + A_{f_{CP}} \cos(\Delta m_d \Delta t)$

Direct \mathcal{CP} violation in $B \to DK$

Measures CKM phase γ at tree level, \Rightarrow SM reference point.

If D^0 and $\overline{D}{}^0$ decay into the same final state: $|\tilde{D}\rangle = |D^0\rangle + r_B e^{\pm i\gamma + i\delta_B} |\overline{D}{}^0\rangle$ for B^\pm

Ratio of two amplitudes: $r_B = \left| \frac{A(B^- \to \overline{D}^0 K^-)}{A(B^- \to D^0 K^-)} \right| = \left| \frac{V_{ub} V_{cs}^*}{V_{cb} V_{us}^*} \right| \times [\text{Color supp}] \sim 0.1$ Measurement techniques:

- Measure asymmetry of **rates** with D decaying to $C\mathcal{P}$ -eigenstates $(D \to KK, \pi\pi)$ or suppressed $D^0 \to K^+\pi^-$ states
- Measure asymmetry in **kinematic distributions** for multibody D decays. "Golden mode": $D \to K_S \pi^+ \pi^-$.

Extremely clean theoretically, limiting accuracy $< 10^{-7}$

Direct \mathcal{CP} violation in $B \to DK$: $D \to hh$ modes

Measure asymmetry of decay probabilities for B^+ and B^-

Direct \mathcal{CP} violation in $B \to DK$: $D \to K^0_S h^+ h^-$ modes

 $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K^0_S \pi^+ \pi^-$: amplitude analysis

[Phys. Lett. B 718 (2012) 43-55]

2D kinematic distribution of

$$D \to K_S^0 \pi^+ \pi^-$$
 from $B^{\pm} \to DK^{\pm}$
 $p_{\pm}(m_+^2, m_-^2) = |A_D + r_B e^{\pm i\gamma + i\delta} \overline{A}_D|^2$

where A_D is known from flavour-specific $D^* \to D^0 \pi$ decays

Model-independent analysis: remove dependence on A_D modelling (and hard-to-quantify model uncertainty) by binning the $D \to K^0_S \pi^+\pi^-$ phase space and counting events in bins.

$$N_{i} = h[K_{i} + r_{B}^{2}K_{-i} + 2\sqrt{K_{i}K_{-i}}(xc_{i} - ys_{i})]$$

where $x = r_B \cos(\delta_B \pm \gamma)$, $y = r_B \sin(\delta_B \pm \gamma)$,

$$c_i = \langle \cos \Delta \delta_D \rangle_i, \ s_i = \langle \sin \Delta \delta_D \rangle_i$$
 are obtained from $e^+e^- \to D\overline{D}$

 K_i are yields in flavour D^0 decay, from D^* tags

Direct \mathcal{CP} violation in $B \to DK$: charm inputs

Measured asymmetries with ADS/GLW provide constraints on $\gamma,$ e.g.:

Inputs related to D decays are provided by external measurements:

- r_D , δ_D are ratio and phase difference between $A(D^0 \to K^+\pi^-)$ and $A(D^0 \to K^-\pi^+)$. Extracted from charm mixing analyses or from $e^+e^- \to D\overline{D}$ data.
- Multibody ADS modes e.g. $D \to K^- \pi^+ \pi^- \pi^+$: additional coherence factor κ , from $e^+e^- \to D\overline{D}$.
- Quasi-*CP*-eigenstates as $D \to \pi^+ \pi^- \pi^+ \pi^-$: *CP* content F_+ , from $e^+e^- \to D\overline{D}$.
- $D \to K_S^0 \pi^+ \pi^-$: average strong phase differences c_i , s_i are external charm input.
 - Currenly from CLEO: contribution to $\sigma(\gamma) \sim 2^{\circ}$.
 - BES-III: ~ 4 times more stats \Rightarrow potentially $\sigma(\gamma) \sim 1^{\circ}$
 - For γ precision $< 1^{\circ}$ (LHCb upgrade) need more charm data.
 - Alternatively, can constrain from charm mixing or other B decays $(B^0 \rightarrow DK\pi)$ with large r_B .

Why $e^+e^- \rightarrow D\overline{D}$? Because D mesons are produced in quantum-correlated state $|A(D\overline{D})|^2 = |A(D_1)A(\overline{D}_2) - A(\overline{D}_1)A(D_2)|^2$. Correlated densities provide relative phase information not observable otherwise.

Direct \mathcal{CP} violation in $B \to DK$

- Combination of many different modes sensitive to γ :
 - Time-integrated asymmetries in $B\to DK,\ B\to DK^*,\ B\to DK\pi$ with $D\to hh, hhhh$
 - Dalitz-plot analysis of $D^0 \to K^0_{\rm S} h^+ h^-$ from $B \to DK$, $B \to DK^*$
 - Time-dependent analysis of $B_s \rightarrow D_s K$
- Experimentally, just entering precision measurement regime (< 10%)

Combination of all LHCb results: $\gamma = (76.8^{+5.1}_{-5.7})^{\circ}$ (LHCb preliminary)

Indirect:
$$\gamma = (65.3^{+1.0}_{-2.5})^{\circ}$$
 [CKMFitter 2016]

[LHCb-CONF-2017-004, EPS 2017]

[LHCb, Nature Phys. 11 (2015) 743]

- Use Λ_b^0 sample for $|V_{ub}|$ measurement, cleaner final state
- Measure $|V_{ub}|/|V_{cb}|$ from $|V_{ub}/V_{cb}|^2 = \frac{\mathcal{B}(\Lambda_b^0 \to p\mu\nu)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu\nu)} R_{FF}$
- Fit corrected mass $M_{\rm corr} = \sqrt{p_T^2 + M_{p\mu}^2} + p_T$
- $|V_{ub}| = [3.27 \pm 0.15 \pm 0.16 (\text{LQCD}) \pm 0.06 (V_{cb})] \times 10^{-3}$
- Dominant uncertainty: absolute $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$. Potential $c\tau$ input.

Rare decays

What kinds of rare decays are we studying?

 Flavour changing neutral currents.
 In the SM, these are suppressed by weak loop: Typical signatures:

- lepton pair (with $\gamma^*, Z^0 \rightarrow \mu^+ \mu^-$)
- hard photon $(B \to K^* \gamma)$

Search for deviations from SM expectation in probabilities, angular distributions *etc.*

• Lepton flavour violating decays E.g. $B \rightarrow e^{\pm} \mu^{\mp}$. Strongly forbidden in the SM.

Flavour (non-)universality

Lepton couplings in SM are the same for three generations of leptons (e, μ, τ) . Possible NP if deviations *e.g.* in $B \to Ke^+e^-$ and $B \to K\mu^+\mu^-$.

Angular observables in $B^0 o K^{*0} [o K^+ \pi^-] \mu^+ \mu^-$

Decay fully described by three helicity angles $ec{\Omega}=(heta_\ell, heta_K,\phi)$ and $q^2=m_{\mu\mu}^2$

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\bar{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1-F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \Big]$$

- $F_{\rm L}, A_{\rm FB}, S_i$ combinations of K^{*0} spin amplitudes depending on Wilson coefficients $C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)}$ and form factors
- Relative sign between B^0 and $\overline{B}^0 \rightarrow$ access to CP asymmetries $A_{3,...,9}$
- Alternative: ratios of angular observables where form factors cancel at leading order, e.g. $P'_5 = \frac{S_5}{\sqrt{F_{\rm L}(1-F_{\rm L})}}$ [S. Descotes-Genon *et al.*, JHEP, 05 (2013) 137]

[LHCb, JHEP 02 (2016) 104]

Measure angular observables $F_L, A_{FB}, S_{3\dots 9}$ in bins of q^2 . P_5' : 3.7 σ tension in $q^2 \in (4, 8) \text{ GeV}^2$ A_{FB} : mild tension in low- q^2 region

Global fits to $b \to s$ data

[W. Altmannshofer et al. EPJC 77 (2017) 377]

In general, consistent pattern: modified vector coupling $C_9^{NP} \neq 0$ at 4-5 σ level.

- New tree-level contribution from e.g. Z' with a mass of a few TeV
- Problem in our understanding of QCD contributions?

Could be understood by looking at C_9 trend as a function of $q^2 \Rightarrow$ need more data

Lepton universality in $b \to s \ell^+ \ell^-$

Lepton universality: electroweak interaction is the same for all three generations of leptons.

 $b \to s \ell^+ \ell^-$ decyas $(\ell = e, \mu)$: good probe of lepton universality.

After a small phase space correction, ${\cal B}$ to $\mu^+\mu^-$ and e^+e^- should be equal in SM.

Measure double ratio to cancel systematic uncertainties:

$$R(K^*) = \frac{\mathcal{B}(B^0 \to K^* \mu^+ \mu^-) / \mathcal{B}(B^0 \to J/\psi \,(\mu^+ \mu^-) K^*)}{\mathcal{B}(B^0 \to K^* e^+ e^-) / \mathcal{B}(B^0 \to J/\psi \,(e^+ e^-) K^*)}$$

as a function of $q^2=m^2(\ell^+\ell^-).$

This implies that $\mathcal{B}(J/\psi(\mu^+\mu^-)/\mathcal{B}(J/\psi(e^+e^-)=1)) = 1$, an assumption that is tested at e^+e^- machines (in particular, KEDR).

 $R(K^{\ast}) \neq 1$ could be generated by a contribution of new gauge bosons or leptoquarks.

[arXiv:1705.05802]

LHCb status and prospect

[arXiv:1705.05802]

Anton Poluektov

LHCb status and prospect

Consistent R < 1 pattern in both $B^+ \to K^+ \ell^+ \ell^-$ and $B^0 \to K^{*0} \ell^+ \ell^-$:

 $\begin{aligned} R_{K} &= 0.745^{+0.090}_{-0.074} \,(\text{stat}) \pm 0.036 \,(\text{syst}) \,\,\text{for} \,\, 1 < q^2 < 6 \,\,\text{GeV}^2/c^4 \\ R_{K^{*0}} &= 0.66^{+0.17}_{-0.07} \,(\text{stat}) \pm 0.03 \,(\text{syst}) \quad \text{for} \,\, 0.045 < q^2 < 1.1 \,\,\text{GeV}^2/c^4 \end{aligned}$

 $R_{K^{*0}} = 0.69^{+0.11}_{-0.07} \,(\text{stat}) \pm 0.05 \,(\text{syst}) \quad \text{ for } 1.1 \quad < q^2 < 6.0 \,\text{GeV}^2/c^4 \quad (2.5\sigma \,\,\text{from SM})$

 $R\simeq 0.8$ is predicted in some Z' models, see e.g. [W. Altmannshofer et al., PRD 89 (2014) 095033]

Lepton universality in semileptonic B decays

Another class of decays where hints of lepton non-universality is seen: $B \to D^{(*)} \ell \bar{\nu}_{\ell}$ $(\ell = (\mu, \tau)).$

Previously studied by B factories and by LHCb with $\tau \rightarrow \mu \nu_{\tau} \bar{\nu}_{\mu}$.

SM contribution could be modified by charged Higgs or leptoquarks

Observables: yield, $q^2 = (p_B - p_D)^2$, angular distributions.

[LHCb-PAPER-2017-017, EPS 2017]

Now: measure
$$R(D^*) = \frac{\mathcal{B}(\overline{B}^0 \to D^{*+}\tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{*+}\mu^- \overline{\nu}_{\mu})}$$
 with $\tau \to 3\pi(\pi^0)\overline{\nu}_{\tau}$ decays.
Technically, measure $K(D^*) = \frac{\mathcal{B}(\overline{B}^0 \to D^{*+}\tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{*+}3\pi)}$
Employ decay topology for background suppression.
Multivariate discriminant (BDT) to suppress
 $B \to D^*D_s$
3D fit in τ_B, q^2 , BDT response. Fit results in q^2 and τ_B projections (4 BDT bins):

a 2000 didates / (0.00025 ns 120 LHCb undidates / (0,00025 1000 τ (ns) τ (ns) τ (ns) 160 1.375GeV² 1.375GeV 1400 1200 600 300 1000 80 200 600 comb 40 20 $a^2 (GeV^2/c^4)$ $a^2 (GeV^2/c^4)$ q2 (GeV2/c4) $a^2 (GeV^2/c^4)$ R(D*) This analysis: $\Delta \chi^2 = 1.0$ contours SM Predictions 0.45 $R(D^*) = 0.286 \pm 0.019 \pm 0.025 \pm 0.021$ (ext) R(D)=0.300(8) HPOCD (2015) PRI 118 211801/2017 R(D)=0.299(11) FNAL/MILC (2015) 0.4 Averae R(D*)=0.252(3) S. Fajfer et al. (2012) External systematics from $\mathcal{B}(D_s^+)$ for 0.35 backgrounds: potential $c\tau$ input 0.3 F New WA: $R(D^*) = 0.304 \pm 0.015$ 0.25 3.4 σ above SM prediction 0.2 0.2 0.3 0.4 Combined with R(D): 4.1 σ from SM 0.6 R(D)

[LHCb-PAPER-2017-017, EPS 2017]

Charm physics

Charm mixing with $D^0 \to K\pi$

WS/RS ratio $R(t) = R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$

Measure y' and x'^2 , related to mixing parameters x, y via rotation by strong phase difference δ_D .

Additionally, fits allowing CP violation (direct and in mixing).

$$x'^2 = (3.9 \pm 2.7) \times 10^{-5}, y' = (5.28 \pm 0.52) \times 10^{-3}, R_D = (3.454 \pm 0.031) \times 10^{-3}$$

Charm mixing with $D^0 \to K\pi$

Time-dependent \mathcal{CP} violation in charm

Rare charm decays

Can proceed via short- $(c \rightarrow u\mu^+\mu^-)$ or long-distance (via ρ^0, ω etc.) contributions

Measured using $D^0 \to K^- \pi^+ (\mu^+ \mu^-)_{\rho^0,\omega}$ as normalisation

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 (\text{syst}) \pm 0.97 (\text{norm})) \times 10^7$

 $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 (\text{syst}) \pm 0.16 (\text{norm})) \times 10^7$

Rarest charm decays ever observed. B's consistent with SM.

Hadron spectroscopy

"Conventional" spectroscopy at LHCb

Many disoveries in conventional spectroscopy (b and c states, baryons and mesons)

- Test theory approaches to low-energy QCD
- Hadronic input for NP-sensitive measurements
- Because it's awesome!

Observation of five new Ω_c states

[PRL 118, 182001 (2017)]

State	Mass, MeV	Width, MeV	Yield
$\Omega_{c}^{0}(3000)$	$3000.4 \pm 0.2 \pm 0.1 ^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300\pm100\pm80$
$\Omega_{c}^{0}(3050)$	$3050.2\pm0.1\pm0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970\pm60\pm20$
$\Omega_{c}^{0}(3066)$	$3065.6\pm0.1\pm0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740\pm100\pm50$
$\Omega_{c}^{0}(3090)$	$3090.2\pm0.3\pm0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$
$\Omega_{c}^{0}(3119)$	$3119.1\pm0.3\pm0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$

Two states extremely narrow (3050 and 3119), exotic?

Anton Poluektov

Observation of doubly-charmed state

displacement $> 5\sigma_{\tau} \Rightarrow$ weakly decaying.

M(ccd)

Pentaquark states in $\Lambda^0_b o J/\psi \, p K^-$

Most of charm and charmonium spectroscopy is done in decays of b hadrons:

- Clean signal, small background due to well-separated vertex
- Well-defined initial state allows for determination of quantum numbers in amplitude analysis

Pentaquark states in $\Lambda^0_b o J/\psi \, p K^-$

Most of charm and charmonium spectroscopy is done in decays of b hadrons:

- Clean signal, small background due to well-separated vertex
- Well-defined initial state allows for determination of quantum numbers in amplitude analysis

Two $J\!/\psi\,p$ states give the best fit, J=3/2 and 5/2 with opposite parities

PRL 115, 072001 (2015),

- 🖶 data	- 👎 · Λ(1670)
total fit	→· Λ(1690)
- background	- ※ - ∧(1800)
CCC P (4450)	- ⊡ · Λ(1810)
D (4290)	- ☆ · Λ(1820)
	- - - $\Lambda(1830)$
- + -Λ(1405)	- ± · Λ(1890)
-⊖- Λ(1520)	- 📀 · Λ(2100)
-�- ∧(1600)	- <u>-</u> - Λ(2110)

Parameters of the pentaquark states

 $P_{c}(4380):$ $M = 4380 \pm 8 \pm 29 \text{ MeV},$ $\Gamma = 205 \pm 18 \pm 86 \text{ MeV},$ $\mathcal{F} = (8.4 \pm 0.7 \pm 4.2 \text{(syst)})\%$ $P_{c}(4450):$ $M = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV},$ $\Gamma = 39 \pm 5 \pm 19 \text{ MeV},$ $\mathcal{F} = (4.1 \pm 0.5 \pm 1.1 \text{(syst)})\%$

Significance (stat+syst) is overwhelming: 9σ and 12σ

LHCb: upgrade and future plans

Hardware L0 trigger becomes bottleneck at high luminosities Readout at 40 MHz will allow to keep high efficiency for hadronic channels.

Summary

LHCb: flavour physics in proton-proton collisions. Extremely successfull so far.

- Entering precision phase of \mathcal{CP} violation measurements.
 - Looks SM-like yet.
- Interesting hints in rare decays. Stay cautiously optimistic, need more data.
 - Angular observables in $b \rightarrow s$ transitions.
 - Flavour universality.
- Broad charm physics programme
 - Thanks to innovations in trigger
- A flood of discoveries in charm and beauty spectroscopy.
 - Conventional ans exotic
- Many interesting topics I could not cover: EW physics, soft QCD, fixed-target programme (gaseous target), etc.
- Upgrade: Phase I approved and on track.
 - Start data taking in 2021, aim 50 fb $^{-1}$ ($\times 60$ Run 1 stats for hadronic modes) by 2029
- Further upgrades being discussed
 - Up to 300 fb $^{-1}$, 2031 and beyond

Backup

Oscillations of neutral mesons

Weakly decaying neutral mesons (K^0, D^0, B^0, B^0_s) are known to oscillate.

Weak loop connects states of opposite flavour: *mixing*

 $B_{s}^{0} \xrightarrow{\overline{b}} (\overline{t}, \overline{c}, \overline{u}) \xrightarrow{\overline{s}} (\overline{b}, \overline{c}) \xrightarrow{\overline{s}} (\overline{b}, \overline{c}, \overline{u}) \xrightarrow{\overline{s}} (\overline{b}, \overline{c}) \xrightarrow{\overline{s}} (\overline{b$

Two mass eigenstates, mass difference ΔM

$$|B_L\rangle = |B^0\rangle + |\overline{B}^0\rangle |B_H\rangle = |B^0\rangle - |\overline{B}^0\rangle$$

In general, width difference $\Delta\Gamma$

For B^0 mesons, oscillation period is \sim lifetime.

[LHCb, New J. Phys. 15 (2013) 053021]

Many \mathcal{CP} violation measurements involve oscillations.

That's why we want ${\cal B}$ mesons to be ${\it boosted}$

 $(e^+e^- \text{ machines: artificial boost by asymmetric beam energies})$

Anton Poluektov

Oscillations of neutral mesons

Weakly decaying neutral mesons (K^0, D^0, B^0, B^0_s) are known to oscillate.

Weak loop connects states of opposite flavour: mixing

Two mass eigenstates, mass difference ΛM

$$|B_L\rangle = |B^0\rangle + |\overline{B}^0\rangle |B_H\rangle = |B^0\rangle - |\overline{B}^0\rangle$$

In general, width difference $\Delta\Gamma$

 B_s^0 mesons oscillate many times during their lifetime.

Many CP violation measurements involve oscillations.

That's why we want B mesons to be boosted

 $(e^+e^- \text{ machines: artificial boost by})$ asymmetric beam energies)

Another tool to measure phases: amplitude analysis technique.

Perform fits of the amplitude as a function of phase space variables

- Three-body decays $D \to ABC$: two kinematic variables m_{AB}^2 , m_{BC}^2 (Dalitz plot)
- Add angular variables if initial/final state not scalar

- Absolute phase not visible, but *relative* phases of components can be accessed though interference
- Typically, use *isobar model*. E.g. for a resonance in AB:
 - Line shape (*Breit-Wigner* etc.) in m_{AB}^2
 - Helicity structure (depending on spin of resonance) in $m^2_{BC}\,$
- In addition, there exist model-independent techniques for amplitude analyses.

Another tool to measure phases: *amplitude analysis* technique.

Perform fits of the amplitude as a function of phase space variables

- Three-body decays $D \to ABC$: two kinematic variables m_{AB}^2 , m_{BC}^2 (Dalitz plot)
- Add angular variables if initial/final state not scalar

- Absolute phase not visible, but *relative* phases of components can be accessed though interference
- Typically, use *isobar model*. E.g. for a resonance in AB:
 - Line shape (*Breit-Wigner* etc.) in m_{AB}^2
 - Helicity structure (depending on spin of resonance) in m^2_{BC}
- In addition, there exist model-independent techniques for amplitude analyses.

Direct \mathcal{CP} violation in charmless B decays

Charmless B decays, in principle, also give access to the value of γ , although they can be affected by the New Physics due to penguin contribution:

Study integrated \mathcal{CP} asymmetries, as well as local asymmetries over the phase space.

$$A_{CP} = \frac{\Gamma(B^-) - \Gamma(B^+)}{\Gamma(B^-) + \Gamma(B^+)}$$

Huge asymmetries in certain regions of phase space. Amplitude analyses ongoing to understand their nature.

Anton Poluektov

LHCb status and prospects

Use semileptonic $B^0_{(s)} \to D_{(s)} \mu \bar{\nu}_{\mu}$ decays.

$$A_{CP} \equiv a_{sl} = \frac{\Gamma(\overline{B} \to B \to f) - \Gamma(B \to \overline{B} \to \overline{f})}{\Gamma(\overline{B} \to B \to f) + \Gamma(B \to \overline{B} \to \overline{f})}$$

 $\begin{array}{ll} \mbox{Standard Model predictions: [A. Lenz, arXiv:1205.1444]} \\ a^d_{sl} = (-4.1 \pm 0.6) \times 10^{-4} \\ a^s_{sl} = (+1.9 \pm 0.3) \times 10^{-5} \end{array}$

Production asymmetry can be $A_P \neq 0$ in pp collisions.

- For B_s^0 : smeared by fast B_s^0 oscillations, not an issue
- For B⁰, can be accounted for by measuring time-dependent asymmetry:

$$A_{\rm raw}(t) = A_D + \frac{a_{sl}}{2} - \left(A_P + \frac{a_{sl}}{2}\right) \cos \Delta m t$$

 3.6σ tension with SM from D0, but not confirmed by LHCb measurements

[LHCb, PRL 114 (2015) 041601, PRL 117 (2016) 061803]

Time-dependent \mathcal{CP} violation in B_s^0 decays

Measure \mathcal{CP} violation in the interference of decays with and w/o mixing "Golden mode": $B^0_s\to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

 ${\cal CP}$ violating phase $\varphi_s = \varphi_M - 2\varphi_D$; $\varphi_s^{SM} \simeq -2\beta_s = 0.0376 \pm 0.0008$ rad [CKMFitter]

- Time-dependent flavor-tagged decay rate
- K⁺K⁻ can be in P wave (φ) or S wave
- 3 *P* waves (*CP*-odd or *CP*-even), angular analysis to distinguish them

6D fit! (m_{KK} , t, mistag rate, 3 angles), bins in m_{KK} and B tag.

Time-dependent \mathcal{CP} violation in B^0_s decays

Several different B_s^0 decay modes used by LHCb

Decay mode	Analysis technique	φ_s result	Publicaion
$J/\psi\phi$	angular, bins in m_{KK}	$-0.068 \pm 0.049 \pm 0.006$	[PRL 114, 041801 (2015)]
$J/\psi \pi^+\pi^-$	amplitude, angular	$+0.070\pm0.068\pm0.008$	[PLB 736 (2014) 186]
$D_s^+ D_s^-$	CP-even	$+0.02\pm 0.17\pm 0.02$	[PRL 113, 211801 (2014)]
$\psi(2S)\phi$	angular	$+0.23^{+0.29}_{-0.28}\pm0.02$	[PLB 762 (2016) 253]
$J/\psi K^+K^-$ above ϕ	amplitude, angular	$+0.119\pm0.107\pm0.034$	[arXiv:1704.08217]

Measurements are also performed by Atlas, CMS and Tevatron experiments

World-averaged value $arphi_s(WA) = -0.030 \pm 0.033$ [HFLAV, arXiv:1612.07233]

In excellent agreement with the SM value $\varphi_s^{SM}=0.0376\pm0.0008$

Mixing-induced CP violation in $B^0 \rightarrow J/\psi K_{\rm S}^0$ decays

"Golden mode" at B-factories, but LHCb provides competitive measurement after recent flavour-tagging improvements.

Time-dependent asymmetry:

$$A(t) = \frac{S\sin(\Delta mt) + C\cos(\Delta mt)}{\cosh(\Delta\Gamma t/2) + A_{\Delta\Gamma}\sinh(\Delta\Gamma t/2)}; S = \sin 2\beta$$

[LHCb, PRL 115, 031601 (2015)]

$B_{(s)} ightarrow \mu^+ \mu^-$: the story so far

SM expectation: $\mathcal{B}(B^0_s o \mu^+\mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ [C. Bobeth, PRL 112, 101801 (2014)]

$B_{(s)} ightarrow \mu^+ \mu^-$ in LHC Run1

The two mass eigenstates of B_s^0 have significant width difference, $\Delta\Gamma=0.082\pm0.007~{\rm ps}^{-1}.$

In SM, only heavier mass eigenstate decays to $\mu^+\mu^-.$

Can measure B_s^0 lifetime in $B_s^0
ightarrow \mu^+ \mu^-$ decays (effective lifetime)

$$\begin{split} \tau_{\mu^+\mu^-} &= \frac{\tau_{B_s^0}}{1-y_s^2} \frac{1+2A_{\Delta\Gamma}\,y_s+y_s^2}{1+A_{\Delta\Gamma}\,y_s},\\ y_s &= \tau_{B_s^0} \frac{\Gamma_s}{2} \end{split}$$

In SM, $A_{\Delta\Gamma}=1,$ while in NP models it could be $A_{\Delta\Gamma}\in [-1,1]$

New independent observable sensitive to NP

To be compared to $\tau_{B^0_s} = 1.520 \pm 0.004 ~\rm ps$

Effective theory

Model-independent description in effective theory:

$B_{(s)} \to \mu^+ \mu^-$

Run 1 + part of Run2, 4.4 fb⁻¹ in total. First observation of $B^0_s\to\mu^+\mu^-$ in a single experiment

• Observation of
$$B_s^0 \to \mu^+ \mu^-$$
:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$$

 7.8σ significance

$$B^{0} \to \mu^{+}\mu^{-} \text{ consistent with no signal:} \\ \mathcal{B}(B^{0} \to \mu^{+}\mu^{-}) = (1.5^{+1.2}_{-1.0}) \times 10^{-10} \\ 10^{-10}$$

 1.6σ significance

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10}$

 First measurement of effective B⁰_s lifetime New independent observable sensitive to NP

 $au_{\mu^+\mu^-} = 2.04 \pm 0.44 \pm 0.05 \; {
m ps}$

To be compared to
$$au_{B^0_s} = 1.520 \pm 0.004$$
 ps

[LHCb, PRL 118, 191801 (2017)]

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ selection

- BDT to suppress combinatorial background Input variables: PID, kinematic and geometric quantities, isolation variables
 Veto of B⁰ → J/ψ K^{*0} and B⁰ → ψ(2S)K^{*0} (important control decays)
- Veto of $B^* \to J/\psi K^*$ and $B^* \to \psi(2S)K^{**}$ (important control decays and peaking backgrounds using kinematic variables and PID
- Signal clearly visible as vertical band after the full selection

Cross-sections consistently lower than SM in low- q^2 region.

New Physics or larger theory uncertainty?

- No free quarks, held together by strong interaction. Form colourless objects, most simple ones: mesons $(q\bar{q})$ and baryons (qqq)
- Angular, spin and radial excitations ⇒ spectroscopy
- Perturbative QCD calculations have limited applicability: phenomenological models (non-relativistic potential), lattice QCD.

SU(4) meson multiplets with S = 1/2

SU(4) baryon multiplets with S=1/2

Exotic spectroscopy: beyond 2- and 3-quark systems: tetraquarks (qqqqqq), pentaquarks (qqqqqq)

Excited Ω_c states

Baryons with a single heavy quark:

- Heavy quark effective theory: heavy quark as a source of static potential
- Various spin and orbital excitations (*L*, *l*, *s*_Q, *s*₁, *s*₂)
- Ground states: L = l = 0, spin S = 1/2 or 3/2

- No orbital excitations in css system (Ω_c^0) seen so far
- Expect many states above $\Xi_c K$ kinematic threshold

Searches for doubly-charmed states

- Double heavy quarks have only been seen in mesons: $\psi(c\bar{c})$, $\Upsilon(b\bar{b})$, $B_c^+(\bar{b}c)$.
- Expect three doubly-charmed states: Ξ_{cc}^+ (ccd), Ξ_{cc}^{++} (ccu) and Ω_{cc}^+ (ccs)
- A different system: cc as a heavy diquark; similar to heavy mesons Qq.
- Many theoretical models (relativistic and non-relativistic QCD potential, triple harmonic oscillator, sum rules, bag model etc.), lattice results.

 \blacksquare Ξ_{cc}^+ and Ξ_{cc}^{++} expected to have small mass difference.

Lifetime $\tau(\Xi_{cc}^{++}) > \tau(\Xi_{cc}^{+})$ due to different interference pattern of spectator and exchange diagrams
SELEX collaboration (Fermilab E781) seen a peak in $\Lambda_c^+ K^- \pi^+$ and $D^+ p K^-$ spectra

[PRL 89 (2002) 112001, PLB 628 (2005) 18]

Combined mass: $M(\Xi_{cc}^+) = 3518.7 \pm 1.7 \ {\rm MeV}$

Questions:

- Weakly decaying, but very short lifetime ($\tau(\Xi_{cc}^+) < 33$ fs 90% CL)
- Large production ratio (20% of Λ⁺_c rate through Ξ⁺_{cc})

Not confirmed by other experiments:

- Theorists have thought about exotic (beyond $q\bar{q}$, qqq) hadrons since the early days of quark model
- Experimental evidence for 4-quark mesons started to appear only recently.
 - *X*(3872) (Belle, BaBar, CDF)
 - $\blacksquare Z_b(10610)$ and $Z_b(10650)$ (Belle)
 - Z(4430) (Belle, LHCb)
 - $Z_c(3900)$ (BES-III)
- Pentaquarks: discoveries and undiscoveries...

[R.A. Schumacher, nucl-ex/0512042]

Photoproduction on Nuclei Θ^+		LEP:	5-C		۲	a٨	S-di					LEF	PS-d		LE	PS-c	12€	Dc	LAS-	d2
Photoproduction on Proton $\ensuremath{pK_{\mathrm{s}}}^{0}$						۲	SAP	HIR) CL	.s g	1	
Photoproduction on Proton $nK^*\!K^*\pi^*$									CLA	S-p										
Exclusive K + (N) $\rightarrow pK_s^0$				€) DI	ANA												Δ	BELL	E
HEP Electromagnetic: $\Theta^{\bigstar} \to p \; K_{_{S}}{}^{_{0}}$							Herr	nes	Þ		ieus	FC	CUS			BaB	ar1	ĪW	₽	
Neutrinos									1	вс€	∍	SPH	IINX					E	aBa	2
$\textbf{p+A} \rightarrow \textbf{pK}_{s}{}^{0}\textbf{+X}\textbf{;}\textbf{p+p} \rightarrow \textbf{pK}_{s}{}^{0}\ \boldsymbol{\Sigma}^{*}$						co	FY-TI S'	DF VD2	Q	P	INR			Hyp	erCP		4	VD2	۲	
Other 😝 + Upper Limits							BES	J,¥		HER.	^{A-B} (M	ALI	PН				WAS	⊧●	
											CD	F								
											a	DF.								
$\mathfrak{p} + \mathfrak{p} \text{ (or } A) \rightarrow \Xi^{} + X$; etc.				1	449	/CEF	N€		W	A89	D 1	働	HER ALE	A-B PH	BaB	ar1			E69	þ
HEP Electromagnetic prod. 🗷 🔭												- He EC	rme CLIS	A	Ð	Do	DMP	ASS		
Inclusive ⊖ ⁺ ⁺ → p K ⁺							Herr	nes (ZEL	s		Z	EUS		ST/	R/RI	HIC	
Inclusive $\Theta^0{\mathfrak c} \to D^{(0)^-}$ p							F	11/H	ERA	۲)			ZEU	5			
											P	LEPH	ΗF	DCU	s					
months	9 10	11 12	1 2	3 4	5 6	7 8	9 10	11 12	1 2	3 4	5 6	7 8	9 10	11 12	1 2	3 4	6 6	7 8	9 10	11 12
	20	201					3				20	∩⊿					2	001		

Z(4430) in $B \rightarrow \psi(2S)K^+\pi^-$

[PRL 112, 222002 (2014)]

- Decay $B^0 \to \psi(2S) K^+ \pi^-$
- Signal yield: 25k events
- Combinatorial background: $\sim 4\%$
- 4D amplitude analysis: $(m^2(K\pi), m^2(\psi(2S)\pi), \theta_{\psi'}, \phi_{\psi'})$

Z(4430) in $B \rightarrow \psi(2S)K^+\pi^-$

[PRL 112, 222002 (2014)]

Model-dependent fit prefers resonance-like state with $J^P = 1^+$ $\mathcal{F}(Z(4430)^+) = (5.9 \pm 0.9^{+1.5}_{-3.3}(syst))\%$ Quantum numbers (wrt. favoured $J^P = 1^+$)

Parameters

	LHCb	Belle
Mass, MeV	$4475\pm7^{+15}_{-25}$	$4485 \pm 22^{+28}_{-11}$
Width, ${\rm MeV}$	$172 \pm 13^{+27}_{-34}$	$200_{-46}^{+41}{}^{+26}_{-35}$

Z(4430) in $B \rightarrow \psi(2S)K^+\pi^-$

[PRL 112, 222002 (2014)]

Model-dependent fit prefers resonance-like state with $J^P = 1^+$ $\mathcal{F}(Z(4430)^+) = (5.9 \pm 0.9^{+1.5}_{-3.3}(syst))\%$

Quantum numbers (wrt. favoured $J^P = 1^+$)

Parameters

	LHCb	Belle
Mass, MeV	$4475\pm7^{+15}_{-25}$	$4485 \pm 22^{+28}_{-11}$
Width, MeV	$172\pm13^{+27}_{-34}$	$200^{+41}_{-46}{}^{+26}_{-35}$

Anton Poluektov

Model-independent test of phase rotation. Interference with K^* states provides reference amplitude for phase motion measurement.

- Split $M(\psi'\pi^-)$ (4277–4605 MeV) into 6 bins.
- Fit magnitude and phase independently for each bin.
- Clear phase rotation in counter clockwise direction: characteristic of a resonant behaviour.

Z(4430): model-independent confirmation

[PRD 92 (2015) 112009]

Model-independent confirmation of a structure in $\psi'\pi^-$.

Check that $K^-\pi^+$ amplitude *only* fails to describe the decay.

 $K^-\pi^+$ should contribute to reasonably low moments, while exotic $\psi'\pi^-$ contributes to all moments.

 $m_{(\psi(2S)\pi)}$ distribution can only be described by an unreasonable number of Legendre moments.

[PRD 92 (2015) 112009]

Test statistic:

$$-2\Delta NLL = -2\sum_{i} \frac{W_i}{\epsilon_i} \log \frac{F_l(m_{\psi\pi}^i)}{F_{30}(m_{\psi\pi}^i)}$$

Run toys with $K^+\pi^-$ -only model to determine distribution, compare with $-2\Delta NLL$ in data.

Resonances with spin up to 3 cannot reproduce the features seen in data.

Full amplitude analysis of the $\Lambda^0_b \to J\!/\!\psi\,pK^-$ decay to understand its dynamics.

Fit in 6D phase space: $(M_{Kp}, \theta_{A_b^0}, \theta_\mu, \phi_\mu, \theta_K, \phi_K)$

Admixture of all known Λ^* states does not reproduce the peak observed at $m_{J/\psi_P}=4450\,{\rm MeV}.$

Full amplitude analysis of the $\Lambda_b^0 \to J/\psi \, p K^-$ decay to understand its dynamics.

Fit in 6D phase space: $(M_{Kp}, \theta_{\Lambda^0_b}, \theta_\mu, \phi_\mu, \theta_K, \phi_K)$

Inclusion of the exotic $J/\psi p$ state improves the fit, best $J^P = 5/2^{\pm}$

Full amplitude analysis of the $\Lambda^0_b \to J\!/\!\psi\,pK^-$ decay to understand its dynamics.

Fit in 6D phase space: $(M_{Kp}, \theta_{A_{h}^{0}}, \theta_{\mu}, \phi_{\mu}, \theta_{K}, \phi_{K})$

Two $J/\psi p$ states give the best fit, J = 3/2 and 5/2 with opposite parities

Argand plots: model-independent confirmation of the resonant character of the exotic states.

Interference with Λ^* states allows to extract the phase in bins of $m_{J/\psi p}$.

Clear phase rotation for $P_c(4450)$, direction consistent with Breit-Wigner amplitude Not conclusive for $P_c(4380)$, need more statistics.

[PRL 117 (2016) 082002]

Checking that Λ^{\ast} resonances only cannot describe the data.

Use Legendre moments in $\cos \theta_{hel}$ as a function of m_{pK} .

Allow l_{\max} depending on m_{pK}

Exotic contributions in $\Lambda_b^0 \to J/\psi \, p \pi^-$

[PRL 117 (2016) 082003]

Signal yield: 1885 ± 50 events Background: $\sim 20\%$

 N^* states in $p\pi^-$

Possible exotic contributions:

 $\blacksquare P_c \text{ in } J\!/\psi p$

 $Z_c \text{ in } J/\psi \pi^- \text{ [Belle, PRD 90, 112009 (2014)]}$ $M = 4196^{+31+17}_{-29-13} \text{ MeV}$ $\Gamma = 370 \pm 70^{+70}_{-132} \text{ MeV}$

Exotic contributions in $arLambda_b^0 o J/\psi\,p\pi^-$

[PRL 117 (2016) 082003]

- $N^* \rightarrow p\pi^-$ contributions:
 - Baseline: isobar $p\pi^-$ with 7-14 states.
 - Tried BW and Flatté for N(1535) (opening of nη threshold)
 - Cross-check: *K*-matrix for 1/2⁻ wave using Bonn-Gatchina parametrisation [A. Anisovich et al., arXiv:0911.5277]

Exotic contributions:

- Considered $P_c(4380)$, $P_c(4450)$ (in $J/\psi p$) and $Z_c(4200)$ (in $J/\psi \pi^-$).
- Total significance of exotic contributions: 3.1σ .
- Individual contributions are not significant
- Fit fractions:
 - $\mathcal{F}(P_c(4380)) = (5.1 \pm 1.5^{+2.6}_{-1.6})\%$
 - $\mathcal{F}(P_c(4450)) = (1.6^{+0.8}_{-0.6}, -0.5)\%$
 - $\mathcal{F}(Z_c(4200)) = (7.7 \pm 2.8^{+3.4}_{-4.0})\%$

Peaks in $J\!/\!\psi\,\phi$ around $4140~{\rm and}~4274\,{\rm MeV}$ are found by CDF and confirmed by D0 and CMS

[CDF, PRL 102, 242002 (2009)]

Belle [PRL 104:112004 (2010)]:

no X(4140), but X(4350) in $\gamma\gamma \rightarrow J\!/\psi\,\phi$

no evidence from:

[PRL 118 (2017) 022003], [PRD 95 (2017) 012002]

[PRL 118 (2017) 022003], [PRD 95 (2017) 012002]

Candidates/(10 MeV) Candidates/(10 MeV) 120 LHCb 120 data 100F LHCb - total fit $(K^{*}s)$ 100 80 60 60 40 40 background 20 20 4700 4800 4200 4300 4400 4500 4600 4800 4100 4200 4700 4600 $m_{J/\psi\phi}$ [MeV] $m_{J/\psi\phi}$ [MeV]

[PRL 118 (2017) 022003], [PRD 95 (2017) 012002]

 K^* plus 4(!) exotic states in $J\!/\psi\,\phi$

Contribution J^{PC} Significance M_0 [MeV] Γ_0 [MeV] FF % 1^{++} $83 \pm 21^{+21}_{-14}$ $13\pm3.2^{+4.8}_{-2.0}$ $4146.5 \pm 4.5 \substack{+4.6\\2.8}$ X(4140) 8.4σ $4273.3 \pm 8.3 \substack{+17.2 \\ -3.6}$ 1++ $56 \pm 11 \, {}^{+8}_{-11}$ $7.1 \pm 2.5 \substack{+3.5 \\ -2.4}$ X(4274) 6.0σ $6.6 \pm 2.4 \substack{+3.5 \\ -2.3}$ X(4500) 0^{++} 6.1σ $4506 \pm 11^{+12}_{-15}$ $92\pm21_{-20}^{+21}$ 0^{++} $4704 \pm 10^{+14}_{-24}$ $120\pm31_{-33}^{+42}$ $12\pm 5^{+9}_{-5}$ X(4700) 5.6σ

Masses for X(4140) and X(4274) are consistent with previous measurements, but widths significantly larger.

 K^* states only