Калориметр детектора КЕДР на основе жидкого криптона

Сергей Пелеганчук

23 мая 2025

Introduction

Калориметр – это набор цилиндрических ионизационных камер с жидким криптоном в качестве рабочего вещества.

- Ease of calibration (no intrinsic amplification, uniformity)
- Stability
- High level of segmentation
- Radiation hardness

	Ar	Kr	Xe		NaI	CsI	BGO	BaF ₂	LAr	LKr	LXe
T boiling, K	87.1	119.6	164.9	density a/cm ³	3.67	4.53	7.13	4.9	1.4	2.43	3.06
T smelting, K	83.6	115.8	161.9				/				
p liquid/p gas	784	641	519	X ₀ , cm	2.59	1.85	1.12	2.1	13.5	4.6	2.8
V _{dr} , mm/µs at 1 kV/cm	1.8	2.4	2.2	A_ cm	41 4	36.5	22	29.9	84	60	55
W, eV/pair	24.4	18.3	15.6	7N _I , cm	71.7	50.5	<u> </u>	L).)			
dE/dx, MeV/cm	2.3	3.4	3.9	Rad. resistance	Satis.	Satis.	Satis.	good	fine	fine	fine

Natural krypton contains β-radioactive isotope ⁸⁵Kr with the spectrum edge energy of 0.67 MeV. Период полураспада ⁸⁵Kr: 10.5 лет.

Радиус Мольера в LKr: 6.66 см

KEDR Liquid Krypton Calorimeter

Main parameters: $V_{LKr} = 11 \text{ m}^3$ $M_{LKr} = 27 \text{ tons}$

Calorimeter thickness = $14.8 X_0$ Entrance wall thickness = $0.22 X_0$ Electrodes number: 35 Electrodes total thickness = $0.33 X_0$

Inner \varnothing of electrode system: 1533 mm Outer \varnothing of electrode system : 2894 mm Length of electrode system : 2600 mm Anode-cathode gap: 19.46 mm Electrode thickness: 0.54 mm of G10 Working HV: 1 kV Number of towers: 2304

The electrode system has three layers of towers in the radius, the grounded electrodes of the first layers are divided into strips (4 strip layers for ϕ angle measurement and 4 for Θ). 23.05.2025

Liquid Krypton Calorimeter assembly

Cryogenic system

Twice a day the calorimeter is cooled with liquid nitrogen. The range of the pressure variation in the calorimeter is about 0.1 atm, which corresponds to a 1 K change in the temperature of liquid krypton.

fans anothers

$$\frac{1}{T}\frac{dA_{mip}}{dT} = -1.3 \pm 0.2 \ \%/K; \ \frac{1}{T}\frac{dA_{\gamma}}{dT} = -0.40 \pm 0.05 \ \%/K;$$
23.05.2025

Readout electronics

The channel of the readout electronics consists of the following elements:

- Charge sensitive preamplifier based on FET NJ1800D
- RC-2CR pulse shaper ($\tau = 1.5 \ \mu s$ for towers, $\tau = 4.0 \ \mu s$ for strips)
- Peak ADC (12-bit)

In addition, there are commutation blocks between preamplifiers and shapers that contain the special generators that mimic the input current of real particles for relative calibration of the electronic channels.

Preamplifier

Electronics optimization

The value of the radioactivity noise increases with the shaping time (τ) and the electronic noise decreases with τ , so there is an optimal shaping time. In addition, the contribution of electronic noise and radioactivity to the energy resolution of the calorimeter depends on the free path length (L) of the ionization electrons.

For the parameters of LKr in use, the optimal shaping time for towers is about $1.5 \ \mu s$.

For the strip channels, the shaping time of 4.0 μ s was chosen.

Trigger

The KEDR has a two-level hardware trigger.

The towers of the first two layers of the LKr calorimeter are combined into super-towers for use in the trigger. There are 192 super-towers in the calorimeter, each consisting of eight LKr towers – $2 \times 2 \times 2$ for all coordinates (r, ϕ , z). The signals from the super-towers arrive at the discriminators with adjustable thresholds, and their logical sum goes to the 1st level trigger.

The 2nd level trigger receives 192 analog signals from the super-towers of the calorimeter, which are fed to discriminators with two computer-controlled thresholds - thr1 and thr2 (thr1 < thr2). The output signals from the discriminators are fed to the cluster finder (CF). The CF separately counts the number of clusters with thresholds of thr1 and thr2 and forms the corresponding arguments to be passed to the decision block of the 2nd level trigger.

Electronic noise and radioactivity

N = 0.5 MeV; N+R = 0.8 MeV; R = 0.6 MeV

N = 0.3 MeV; N+R = 0.4 MeV; R = 0.3 MeV

Towers

Strips

Электроника (шумы, стабильность)

Башенные каналы

Фит аналитической функцией для расчета шумов электроники (синяя кривая) и радиоактивности. Красная кривая квадратичная сумма шумов и радиоактивности. Функции: Noise(C_d, T_{dr}, τ_{rc-2cr}, τ_l), Rad(V_{LKr}, T_{dr}, τ_{rc-2cr}, τ_{1} * D(T_{1/2}, t) Фиксированные параметры: $T_{dr} = 9 \ \mu s$, $\tau_{rc-2cr} = 1.5 \ \mu s$. Свободные параметры: Ёмкость башни: Cd [pF] Объём башни: V_{LKr} [литры] Время жизни: $\tau_{l}^{i} [\mu s] = T_{const} + T_{0}^{i*} exp(t/\tau_{d}^{i}),$ і – индекс временного интервала. Время жизни изотопа ⁸⁵Кг: Т_{1/2} [месяцы]. Результат подгонки: C_d = 341.0 ± 0.3 pF; V_{IKr} = 3.19 ± 0.02 l; T_{const} = 1.17 ± 0.01 µs $T_{1/2}$ = 240.1 ± 0.4 months. $T_0^1 = 3.70 \pm 0.01 \ \mu s; \ \tau_d^1 = 31.23 \pm 0.01 \ months$ $T_0^2 = 13.78 \pm 0.01 \ \mu s; \tau_d^2 = 16.66 \pm 0.02 \ months$ $T_0^3 = 10.76 \pm 0.07 \ \mu s; \tau_d^3 = 18.17 \pm 0.01 \ months$ Период полураспада: T_{1/2}*ln2 = 240 ln2 = 166 месяцев = 13.9 лет

Шумы на пьедестале в МэВ с включенным HV (красные точки) и без него (синие точки).

Krypton Purification

The LKr calorimeter does not have a system to permanently purify the krypton from electronegative impurities. Therefore, the signal amplitude in the calorimeter decreases with time. When the amplitude falls below a certain level, the krypton was completely purified during a technical shutdown.

Amplitude of M.I.P. as a function of time (2003 - 2023)

Krypton Purification

The UTOA-40/A industrial purifier with two large cartridges is used for krypton purification. The purification system could only operate with gaseous krypton at room temperature.

Linearity and Long-term stability

KEDR has performed a series of experiments in 2015-2022 to measure the R value (the ratio of the hadron production cross section to the muon pair production cross section) over a wide energy range from 1.84 GeV to 7.0 GeV. These experiments provide an opportunity to study the linearity and long-term stability of the calorimeter response over a wide range of cluster energies using electron-positron scattering events.

The dependence of the cluster energy in the LKr calorimeter on the beam energy in the collider is shown, as well as the deviation from the linear fit.

Energy resolution with electrons (positrons)

The energy resolution for electron-positron scattering events was measured on the same data set.

Several spectra for the energy of the cluster in the LKr calorimeter are given as examples.

 $E_{beam} = 2.7 \text{ GeV} \quad \sigma_E / E = (3.02 \pm 0.03)\%$

$E_{beam} = 1.75 \text{ GeV} \quad \sigma_E / E = (3.36 \pm 0.02)\%$

Энергетическое разрешение. Электроны

Energy resolution with photons

The same for photons in $e^+e^- \rightarrow \gamma\gamma$ events.

 $E_{beam} = 2.7 \text{ GeV} \quad \sigma_E / E = (3.16 \pm 0.15)\%$

 $E_{beam} = 1.8 \text{ GeV} \quad \sigma_E / E = (3.50 \pm 0.08)\%$

 $E_{beam} = 3.4 \text{ GeV} \quad \sigma_E / E = (3.27 \pm 0.10)\%$

Радиационные переходы Ψ' → γ χ_{с0,1,2}

Фотоны из распадов π^0 исключены. Подгонка: полином 3 степени + 3 асимметричных гаусса + $BW \times \omega^3 \times$ асимметричный гаусс для $\Psi' \rightarrow \gamma \chi_{c0}$.

Каскадные радиационные переходы $\Psi' \rightarrow \gamma \chi_{c0,1,2} \rightarrow \gamma \gamma J/\Psi \rightarrow \gamma \gamma I^+I^-$

Энергетическое разрешение. Фотоны

Invariant mass of two photons

The peak from π^0 decay.

Experimental data at the $\Psi(2S)$ peak.

 $\sigma_{\rm M}/{\rm M}$ = (6.24 ± 0.09)%

 $\sigma_{\rm M}/{\rm M}$ = (6.17 ± 0.12)%

MC

Invariant mass of two photons

The peak from π^0 decay.

Experimental data at the $\Psi(2S)$ peak.

Experimental data at the J/Ψ peak.

 $\sigma_{\rm M}/{\rm M} = (6.46 \pm 0.12)\%$

Strips

52.46 / 68

 1303 ± 20.7

 127.5 ± 0.2

 9.879 ± 0.183

-240.4 ± 90.4

 $\textbf{20.98} \pm \textbf{2.54}$

106.7 / 68

 1512 ± 23.3

127.5 ± 0.1

 8.237 ± 0.148

291.3 + 88.9

22.46 ± 2.49

170

M_{γγ}, MeV

Spatial resolution for MIP

The spatial resolution for MIP was measured using data from the cosmic ray runs. The distributions of the difference between the strip cluster coordinate and the reconstructed track position are shown for three layers of ϕ strips.

Resolution for φ 2 layer:

 $\sigma_{\rm MC} = 0.437 \cdot \sqrt{3/2} = 0.535 \,\text{mm} \pm 0.015$ $\sigma_{\rm exp} = 0.504 \cdot \sqrt{3/2} = 0.618 \,\text{mm} \pm 0.019$

Spatial resolution for photons

Acollinearity angle distributions of photon clusters in the LKr calorimeter for $e^+e^- \rightarrow \gamma\gamma$ events. E_{beam} = 3.5 GeV

 $\sigma_{\omega} \approx$ 0.13° => $\sigma \approx$ 1.8 mm

Оценка пространственного разрешения по π^0

Заходы №10360-11155. Пик **Ψ(2S). Е_у = 500 ± 100 MeV**

При равной энергии фотонов

$$m_{\pi} = 2\omega \cdot \sin \frac{\theta}{2} \approx \omega \cdot \theta$$

 $\left(\frac{\sigma_{\theta}}{\theta}\right)^2 = \left(\frac{\sigma_m}{m}\right)^2 - \left(\frac{\sigma_{\omega}}{\omega}\right)^2$
 $\left(\frac{\sigma_m}{m}\right) = 5.9\% \left(\frac{\sigma_{\omega}}{\omega}\right) = 4.3\% =>$
 $\left(\frac{\sigma_{\theta}}{\theta}\right) \approx 4\% =>$
Для одного фотона $\left(\frac{\sigma_{\phi}}{\phi}\right) \approx \frac{4}{\sqrt{2}}\% \approx$
 $2,9\% =>$
 $\sigma_{\phi} \approx \frac{m_{\pi}}{\omega} \cdot 0,029 \approx 0,0078 \, rad$
 $\approx 0,45^{\circ}$

Оценка пространственного разрешения по π^0

Заходы № 21762-23114. Пик **J/Ψ. Е_v = 500 ± 50 MeV**

При равной энергии фотонов

$$m_{\pi} = 2\omega \cdot \sin \frac{\theta}{2} \approx \omega \cdot \theta$$

 $\left(\frac{\sigma_{\theta}}{\theta}\right)^2 = \left(\frac{\sigma_m}{m}\right)^2 - \left(\frac{\sigma_{\omega}}{\omega}\right)^2$
 $\left(\frac{\sigma_m}{m}\right) = 5.6\% \left(\frac{\sigma_{\omega}}{\omega}\right) = 4.3\% =>$
 $\left(\frac{\sigma_{\theta}}{\theta}\right) \approx 3.5\% =>$
Для одного фотона $\left(\frac{\sigma_{\phi}}{\phi}\right) \approx \frac{3.5}{\sqrt{2}}\% \approx$
2.5% =>
 $\sigma_{\phi} \approx \frac{m_{\pi}}{\omega} \cdot 0.025 \approx 0,0068 \, rad$
 $\approx 0.39^{\circ}$

Spatial resolution for photons

Directly, the spatial resolution for photons was only measured in the experiment with a prototype of the calorimeter on a tagged photon beam. The dependence of the spatial resolution on the photon energy is shown for two layers of strips. The first layer is the layer where the photon conversion took place. The second layer is the one following it. The strip width is 1 cm.

Электроны. Пространственное разрешение.

Распределения по разнице углов **ф** и **θ** между кластером в калориметре и точки попадания в калориметр реконструированного в ДК трека. В реконструкции треков используется информация со стрипов калориметра. **E**_{beam} = **3500 MeV**

σ ≈ 2.2 MM

σ ≈ 2.7 mm

Электроны. Пространственное разрешение

Распределения по разнице углов **ф** и **θ** между кластером в калориметре и точки попадания в калориметр реконструированного в ДК трека. В реконструкции треков **HE** используется информация со стрипов калориметра. **E**_{beam} = **3500 MeV**

dE/dx measurement

The presence of 8 strip layers in the electrode system allows the measurement of ionization energy loss for MIPs.

Итого по результатам КЕДРа

- Энергетическое разрешение:
 - о **7.8%** на 100 МэВ
 - о **3%** на 1.5 ГэВ
- Пространственное разрешение для фотонов:
 - о **0.13° (2 мм)** для энергии 3.5 ГэВ
 - Оценка из ширины π⁰: 0.39° (6 мм) для энергии 500 МэВ
- Разрешение по инвариантной массе π^0 6.5%
- Разрешение по dE/dx в стриповой структуре: **10%**

Возможные пути улучшения параметров калориметра

- 1. С текущей электродной структурой Кардинальная модернизация электроники.
- 2. Регистрация сцинтилляционного света, возможно совместно с ионизацией. ????

Факторы определяющие разрешение:

- Флуктуации продольных утечек: 1.1% (1 ГэВ), 1.8% (5 ГэВ)
- Флуктуации поперечных утечек: (0.7/\sqrt{E(ГэВ)}) %
- Sampling-флуктуации:
- Шум электроники и радиоактивность: (0.19/E + 0.24/ \sqrt{E})%

 $(0.4/\sqrt{E(\Gamma \ni B)})$ %

 $(1.2/\sqrt{E(\Gamma \ni B)})$ %

Геометрический эффект:

Для 100 МэВ получим:

- Флуктуации продольных утечек:
- Флуктуации поперечных утечек:
- Sampling-флуктуации:
- Шум электроники и радиоактивность: 2.7%
- Геометрический эффект:

Зависимость шумов и радиоактивности от времени формирования для одной башни.

Геометрический эффект — это зависимость сигнала от распределения ионизации в зазоре камеры

Резюмируем, что ключевым параметром для улучшения разрешения при малых энергиях является шум электроники. При наличии идеального (без шума) токового усилителя с формирователем с постоянной времени порядка 100 нс, геометрический эффект и шум от радиоактивности пропадают. В этом случае и влияние поперечных утечек кардинально уменьшается.

Но...

Пример ATLAS: ENI = 50 nA для предусилителя с входным током 1 мA, Cd = 330 pF, импеданс 50 Ом.

В калорирметре ток радиоактивности в одной башне порядка 0.5 nA.

Подавление шумов с помощью измерения формы сигнала.

Пусть измерения формы импульса производятся в n точках по времени и образуют вектор измеренных значений s_i , (i = 1, ..., n), а w(t) — полезный сигнал, соответствующий единичному энерговыделению. Предположим сначала, что измерения синхронизованы с появлением сигнала, и w_i — значения отклика в тех же точках по времени, что и s_i . Тогда, очевидно, с точностью до шумов, $s_i = Aw_i$, где A — энерговыделение. Величина A и оценка точности ее определения может быть найдена путем минимизации следующего выражения:

$$\chi^2 = \sum_{i,j}^n (s_i - Aw_i) V_{ij}(s_j - Aw_j) \equiv sVs - 2AwVs + A^2wVw$$

Здесь $sVs = \sum s_i V_{ij} s_j$, $wVs = \sum w_i V_{ij} s_j$, $wVw = \sum w_i V_{ij} w_j$, V — ковариационная матрица, причем $V_{ij} = R_{ij}^{-1}$, а $R_{ij} \equiv R(t_i - t_j)$ — автокорреляционная функция шумов и радиоактивности, которая будет определена ниже. Отсюда стандартным способом находятся A и σ_A :

$$A = \frac{wVs}{wVw}, \ \sigma_A = \left[\frac{\partial^2 \chi^2}{\partial A^2}\right]^{-1} = \frac{1}{wVw}.$$

а) – форма сигнала
b) – автокорреляционная функция
шума электроники
с) – автокорреляционная функция
радиоактивности
d) – суммарная автокорреляционная
функция шума электроники и
радиоактивности

 1 – время жизни электронов 10 мкс, время формировки 0.9 мкс
 2 – время жизни электронов 1 мкс, время формировки 2.3 мкс

Суммарный вклад шумов электроники и радиоактивности в зависимости от времени формирования в случае 1 измерения (кривая 1) и при 9 измерениях формы сигнала (кривая 2).

время жизни электронов 10 мкс

время жизни электронов 1 мкс

Вывод.

Измерение формы сигнала может улучшить энергетическое разрешение калориметра на малых энергиях не больше чем на (20-30)%

Жидкие благородные газы являются сцинтилляторами. Длины волн излучения: LAr: 128 nm; LKr: 150 nm; LXe: 175 nm.

Световыход: 40000-60000 ph/MeV Длина поглощения для LKr: 100-200 cm

Если в LAr или LKr добавить Xe на уровне 1-1000 ppm, то длина волны сдвигается к 175 nm, и световыход заметно увеличивается (в аргоне почти в 2 раза).

Газ	Показатель преломления (nD)
Аргон	~1.45
Криптон	~1.52
Ксенон	~1.55

LXe калориметр для MEG

The time resolution of the Lxe detector is 65 ± 6 ps at $E\gamma = 55$ MeV.

The intrinsic energy resolution of a LXe detector equipped with full size (5 cm diameter) silicon photodiodes was measured using ion beams from the Ring Cyclotron at Riken, Japan [3,5]. The observed energy resolution was 0.6% rms for 1 .64 GeV 14 N, and 0.7% for 2 .65 GeV 40Ar. On the inner face are 4092 (15×15)mm2 Multi-Pixel Photon Counters (MPPCs) operating at the LXe temperature (~ 165K) to detect the scintillation light emitted isotropically from LXe in the VUV range ($\lambda \sim 175$ nm). The other faces of the detector are equipped with 668 PMTs.

Fig. 41 Energy response to 55 MeV γ -rays hitting a central area of the detector ($u \in [-10 \text{ cm}, 10 \text{ cm}] \land v \in [-30 \text{ cm}, -10 \text{ cm}]$) in different w ranges. The fitting function of Eq. (23) is shown in red

Нужна большая исследовательская работа

- Чем регистрировать свет?
- Длина поглощения и ее стабильность в большом объеме
- Примесь ксенона надо или нет? Какая концентрация?
 Как получать и контролировать?
- Температурные зависимости
- Примеси. Как зависят параметры от примесей?
- Сегментация? Регистрация ионизации?
- Электроника?
- Полноразмерный прототип
- Конструкторская проработка