Детектор для Супер c-au фабрики.

Рабочее совещание по физической программе Супер c- τ фабрики

А. Барняков

Институт ядерной физики им. Г.И. Будкера СО РАН

Новосибирск 18–19 декабря 2017

- Введение.
- $oldsymbol{2}$ Детектор для Супер $c ext{-} au$ фабрики
 - Вершинный детектор
 - Дрейфовая камера
 - Система идентификации
 - Калориметр
 - Мюонная система
 - Магнитная система
- Заключение

Введение

Тезис №1

Физическая программа определяет требования к детектору (и коллайдеру).

Тезис №2

От параметров детектора и примененных детекторных технологий зависит реализуемость физической программы.

Тезис №3

Конструкция детектора и коллайдера в месте встречи жестко связаны и могут ограничивать параметры друг друга.

Введение

Тезис №1

Физическая программа определяет требования к детектору (и коллайдеру).

Тезис №2

От параметров детектора и примененных детекторных технологий зависит реализуемость физической программы.

Тезис №3

Конструкция детектора и коллайдера в месте встречи жестко связаны и могут ограничивать параметры друг друга.

Для успешного развития проекта все три составляющих (Физ.программа, Коллайдер, Детектор) должны разрабатываться одновременно, учитывая особенности друг друга.

Физическая программа

- Чармоний
 - ullet Редкие распады J/ψ
 - . . .
- τ-лептон
 - ullet распады с LFV: $au
 ightarrow \mu \gamma$
 - Лептонная универсальность
 - ...
- *D*-мезоны
 - СР-нарушение
 - (Полу)лептонные распады
 - смешивание
 - ...
- С-барионы
 - СР-нарушение
 - Редкие распады
 - . . .
- Экзотика ...

Физическая программа

- Чармоний
 - ullet Редкие распады J/ψ
 - ...
- τ-лептон
 - ullet распады с LFV: $au
 ightarrow \mu \gamma$
 - Лептонная универсальность
 - ...
- *D*-мезоны
 - СР-нарушение
 - (Полу)лептонные распады
 - смешивание
 - ...
- С-барионы
 - СР-нарушение
 - Редкие распады
 - ...
- Экзотика ...

Коллайдер

- $W = 2 \div 5\Gamma \circ B$
- *l*_{бынча} − 1÷1.8 см
- ∆t^{банч} − 6 нс
- \bullet ЦВК: ø 24/l=900 мм
- ΦΦ: ±15°
- $L: 10^{35} \text{cm}^{-1} \text{c}^{-1}$

Физическая программа

- Чармоний
 - ullet Редкие распады J/ψ
 - ...
- τ-лептон
 - ullet распады с LFV: $au
 ightarrow \mu \gamma$
 - Лептонная универсальность
 - ...
- D-мезоны
 - СР-нарушение
 - (Полу)лептонные распады
 - смешивание
 - ...
- С-барионы
 - СР-нарушение
 - Редкие распады
 - . . .
- Экзотика ...

Коллайдер

- $W = 2 \div 5\Gamma \circ B$
- *l*_{бынча} 1÷1.8 см
- ∆t^{банч} − 6 нс
- ЦВК: ø 24/l=900 мм
- ΦΦ: ±15°
- $L: 10^{35} \text{cm}^{-1} \text{c}^{-1}$

Общие требования к детектору

- \bullet Загрузка $\sim 50 \div 300$ к Γ ц
- Высокое импульсное и энергетическое разрешение для заряженных и нейтральных частиц
- Высокая достоверность $e/\mu/\pi/K$ -разделения

Схематический вид.

- 1. Вершинный детектор
- 2. Дрейфовая камера
- 3. Система идентификации
- 4. Калориметр
- 5. Сверхпроводящая катушка ($\sim 1~{\rm T}{\rm \pi}$)
- 6. Ярмо магнита и мюонная система

Универсальный детектор. Вершинный детектор.

Задачи – параметры:

- \bullet Регистрация вершин и измерение пробега $K^0_S,\,\Lambda,\,\dots$?
- Регистрация треков в области недоступной для ДК
- Измерение импульса "мягких" частиц (до 50 МэВ/с)?
- \bullet $\phi_{\text{внутренний}} \geqslant 50$ мм; $\phi_{\text{наружный}} \leqslant 600$ мм; L < 900 мм;

Вершинный детектор.

Задачи – параметры:

- \bullet Регистрация вершин и измерение пробега $\mathit{K}^0_{\mathit{S}},\,\Lambda,\,\dots\,?$
- Регистрация треков в области недоступной для ДК
- Измерение импульса "мягких" частиц (до 50 МэВ/с)?
- $\phi_{\text{внутренний}} \geqslant 50$ мм; $\phi_{\text{наружный}} \leqslant 600$ мм; L < 900 мм;

TPC + GEM на торце

- $Ar/CO_2(80/20) \rightarrow 30$ кластеров/см;
- $\sigma_{X-Y} \sim 50-100 \text{ MKM};$
- $\sigma_Z \sim 300 \text{ MKM}$;
- $\sigma_{dE/dx} \sim$ несколько процентов;
- E=300÷400 B/cm $\rightarrow V_{\rm дp}$ =5 cm/mkc;

ВПК детектора ALICE

Вершинный детектор.

Задачи – параметры:

- \bullet Регистрация вершин и измерение пробега $K^0_S,\,\Lambda,\,\dots$?
- Регистрация треков в области недоступной для ДК
- Измерение импульса "мягких" частиц (до 50 МэВ/с)?
- $\phi_{\text{внутренний}} \geqslant 50 \text{ мм}; \ \phi_{\text{наружный}} \leqslant 600 \text{ мм}; \ L < 900 \text{ мм};$

Цилиндрический GEM

- Количество вещества $\sim 1.5 X_0$;
- $\sigma_{X-Y} \leq 100 \text{ мкм/слой};$
- σ_t ≤7 нс;
- $\bullet \frac{dE}{dx} \text{HeT};$

Цилиндрический GEM (KLOE-2)

Дрейфовая камера.

Задачи:

- Регистрация треков
- Измерение импульса
- Измерение $\frac{dE}{dx}$

Дрейфовая камера.

Задачи:

- Регистрация треков
- Измерение импульса
- Измерение $\frac{dE}{dx}$

Параметры:

- $\emptyset1600:500 \text{ mm}; L=2000 \text{ mm};$
- 7104 ячеек;
- $He/iC_4H_{10}(80/20)$;
- 10 суперслоев: A 4; $S 6 \pm 45 \div 76$ мрад;
- $\sigma_x \sim 125 \text{ MKM}$;
- $\sigma_{t_{\text{md}}} \leqslant 1 \text{ HC}$;
- $\frac{\sigma_{dE/dx}}{dE/dx} \leqslant 7.5\%$;
- $\frac{\sigma_{P_t}}{P_t} = (0.13 \pm 0.01)\% \cdot P_t + (0.45 \pm 0.03)\%;$

ДК детектора BaBar: ячейка и dE/dx.

Дрейфовая камера.

Задачи:

- Регистрация треков
- Измерение импульса
- Измерение $\frac{dE}{dx}$

Схема следа от частицы

Координатное разрешение

Кластерный режим

На единичной дрейфовой трубке показано существенное улучшение пространственного и ${\rm dE/dx}$ разрешения.

Требует более сложной электроники для использования в реальном эксперименте.

Система идентификации.

Задачи:

- π/K-разделение для Р≥ 0.6 Г•В/с
- μ/π-разделение для Р≤ 1.2 Г•В/с

Современный уровень

π/K -разделение

- TOF: BES-III (MPD NICA) $\sigma_t \sim 100 \text{ nc} \rightarrow 3\sigma/0.9(1.5) \text{ } \Gamma \Rightarrow \text{B/c}$
- DIRC(BaBar) \sim 4 σ до 2.5 ГэВ/с
- АШИФ(КЕДР) $\sim 4\sigma$ до 1.5 ГэВ/с μ/π -разделение при Р ≈ 1 ГэВ/с
- Belle $\sim 2.5 \div 2.8\sigma$

Перспективы:

π/K -разделение

- TOF: $\sigma_t \sim 50 \text{ nc} \rightarrow 3\sigma \text{ дo } 1.8(3.0) \text{ ΓэB/c}$
- \bullet fDIRC $\sim 3\sigma$ до 4.25 ГэВ/с
- ФАРИЧ $\geqslant 3\sigma$ до 6 ГэВ/с μ/π -разделение при Рpprox 1 ГэВ/с
- ΦΑΡИЧ ~5σ

Система идентификации: ФАРИЧ

Результаты испытаний прототипа ФАРИЧ на основе DPC Philips в 2012г.

Система идентификации: ФАРИЧ

- Фотонные детекторы $(3 \times 3 \text{ мм}^2)$:
 - Барель КФЭУ (16 м²)
 - Торец КФЭУ, ФЭУ с МКП?, HAPD? (5 м^2)
- \bullet 10⁶ каналов электроники
- ullet загрузка $0.5 \div 1.0 \ \mathrm{M}\Gamma$ ц/канал
- требуется система охлаждения

Параметры:

- ullet Фокусирующий аэрогель, $n_{\max} = 1.07, \ 4$ слоя
- Площадь радиатора: 17 м²

Калориметр.

Задачи:

- ullet регистрация и измерение энергии γ от 1 МэВ до 2 ГэВ
- определение координат фотонов
- e/hadr-разделение
- формирование нейтрального триггера

Параметры:

•
$$\frac{\sigma_E}{E} = 1.8\%(1 \text{ }\Gamma \text{9B}) - \text{CsI(Tl)}$$

•
$$\sigma_{\rm z} pprox rac{6{
m mm}}{\sqrt{E(\Gamma
m 9B)}}$$

pCsI:

- $16 \div 18X_0 \rightarrow 30 \div 34 \text{ cm}$
- $\tau \approx 30 \text{ HC } (1 \mu \text{c y CsI(Tl)})$
- 5248 кристаллов \to 26 \div 31 т
- Фотопентоды или ЛФД+WLS

Схематический вид системы в разрезе

Калориметр.

	ρ, g/cm ³	X ₀ , cm	λ _{em,} nm	n(λ _{em} ,nm)	N _{ph} /MeV	T, ns
CsI(Tl)	4.51	1.85	550	1.8	52000	1000
pCsI	4.51	1.85	305	2	2000-5000	20
LSO (Lu ₂ SiO ₅)	7.4	1.14	440	1.87	25000	40
LYSO (Lu ₂ Y ₂ SiO ₅)	7.4	1.10	430	1.82	31000	40
GSO (Cd ₂ SiO ₅)	6.7	1.38	375	1.87	8000	50

- Основной недостаток кристаллов со структурой ортосиликатов стоимость в $5\div 10$ раз больше CsI(Tl)
- 15÷20 X_0 достигается при меньшей толщине
- ullet Меньше радиус мольера o лучше пространственное разрешение
- \bullet Световыход лучше, чем у
 pCsI, максимум высвечивания в области видимого света

С учетом экономии на объеме, фотодетекторах и сверхпроводящем соленоиде, возможно, – это не слишком дорогая опция?!

Мюонная система.

Задачи – параметры:

- *μ/hadr*-разделение
- \bullet μ/π -разделение по пробегу
 - баррель 9 слоев в ярме $(64\% \times 4\pi)$
 - торец 8 слоев в ярме $(30\% \times 4\pi)$
- $S_{\text{системы}} \approx 1000 \text{m}^2$

Мюонная система.

Задачи – параметры:

- μ/hadr-разделение
- \bullet μ/π -разделение по пробегу
 - баррель 9 слоев в ярме $(64\% \times 4\pi)$
 - торец 8 слоев в ярме $(30\% \times 4\pi)$
- $S_{\text{системы}} \approx 1000 \text{m}^2$

μ/π -разделение

- $-~{
 m BaBar:~64\%/2\%}$ при ${
 m P=}0.5 {\div} 2~{
 m FaB/c}$
- Belle: 90%/2% при Р \geqslant 1 ГэВ/с
- КЕДР: 95%/5% при Р \geqslant 1 ГэВ/с

Подавление $\pi \geqslant 100$ раз возможно совместно с ФАРИЧ

Мюонная система.

Задачи – параметры:

- *μ/hadr*-разделение
- \bullet μ/π -разделение по пробегу
 - баррель 9 слоев в ярме $(64\% \times 4\pi)$
 - торец 8 слоев в ярме $(30\% \times 4\pi)$
- $S_{\text{системы}} \approx 1000 \text{m}^2$

Стримерные трубки

- технология, электроника
- старение?, загрузочная способность?, ...
- КЕДР, КМД, \overline{P} ANDA, ...

μ/π -разделение

- BaBar: 64%/2% при
 P=0.5÷2 ГэВ/с
- Belle: 90%/2% при Р \geqslant 1 ГэВ/с
- КЕДР: 95%/5% при Р≥1 ГэВ/с

Подавление $\pi \geqslant 100$ раз возможно совместно с ФАРИЧ

Мюонная система.

Задачи – параметры:

- *μ/hadr*-разделение
- \bullet μ/π -разделение по пробегу
 - баррель 9 слоев в ярме $(64\% \times 4\pi)$
 - торец 8 слоев в ярме $(30\% \times 4\pi)$
- $S_{\text{системы}} \approx 1000 \text{m}^2$

μ/π -разделение

- $-~{
 m BaBar:~64\%/2\%}$ при ${
 m P=}0.5 {\div} 2~{
 m FəB/c}$
- Belle: 90%/2% при Р \geqslant 1 ГэВ/с
- КЕДР: 95%/5% при Р≥1 ГэВ/с

Подавление $\pi \geqslant 100$ раз возможно совместно с ФАРИЧ

Стримерные трубки

- технология, электроника
- старение?, загрузочная способность?, ...
- КЕДР, КМД, \overline{P} ANDA, ...

RPC

- пространственное и временное разрешение
- старение, электроника
- Belle (KEK), BaBar (SLAC), ...

Мюонная система.

Задачи – параметры:

- *μ/hadr*-разделение
- \bullet μ/π -разделение по пробегу
 - баррель 9 слоев в ярме $(64\% \times 4\pi)$
 - торец 8 слоев в ярме $(30\% \times 4\pi)$
- $S_{\text{системы}} \approx 1000 \text{m}^2$

μ/π -разделение

- $-~{
 m BaBar:~64\%/2\%}$ при ${
 m P}{=}0.5{\div}2~{
 m \GammapB/c}$
- Belle: 90%/2% при Р \geqslant 1 ГэВ/с
- КЕДР: 95%/5% при Р \geqslant 1 ГэВ/с

Подавление $\pi \geqslant 100$ раз возможно совместно с ФАРИЧ

Стримерные трубки

- технология, электроника
- старение?, загрузочная способность?, ...
- КЕДР, КМД, \overline{P} ANDA, ...

RPC

- пространственное и временное разрешение
- старение, электроника
- Belle (KEK), BaBar (SLAC), ...

Cцинтиллятор + WLS + MAФЭУ

- простота в эксплуатации
 - цена?
- MINOS (FNAL)

Требования к магнитной системе

- Длина соленоида 4 м
- Внутренний диаметр 3.2 м
- Внутри соленоида (трековая система, ФАРИЧ, калориметр)
- Магнитное поле 1÷1.2 Тл
- Запасенная энергия 28.8 МДж
- Время подъема тока ≤ 4 ч
- Доступ к системам детектора за 12 \div 24 часа
- В ярме должны размещаться мюонные камеры: 9 слоев в баррели и 8 в торце

Очень схож по требованиям магнит для дететкора PANDA (FAIR).

Заключение.

- В ИЯФ СО РАН создана концепция универсального детектора, учитывающая современный уровень развития детекторных технологий и отвечающая требованиям первой версии физической программы с учетом некоторых параметров коллайдера.
- Необходима актуализация и детальная проработка физической программы для выработки более четких требований к детектору и его системам.
- Для каждой системы детектора существует несколько опций, выбор которых должен происходить как на основании требований физической программы, так и на основании их методической и технической проработанности опции.
- Для создания технического проекта детектора необходимо начинать проработку базовых и не основных опций систем детектора на уровне специализированных прототипов, для чего необходимо создание широкой внутрироссийской и международной коллаборации.

Детектор

ФАРИЧ метод

(Мотивация)

Для **К/π** разделения можно использовать пороговые счетчики

Для μ/π разделения необходим аэрогелевый РИЧ с $\sigma_{\rm track}(\Theta_c)$ < 2.5 мрад

ФАРИЧ позволяет уменьшить вклад толщины радиатора в угловое разрешение, увеличив число фотонов

WLS plate (organic glass covered by compound with NOL-9) 4 APDs Hamamatsu c) S8664-55 **Gain =50** 0.45 CsI (pure) crystal CsI(pure) + 4 APD S8664-55 Entries

Mean

RMS

Prob

p1

600 800 1000 1200 1400 1600 1800 2000

33 MeV

FADC channels

 χ^2 / ndf

898.1

354.7

77.97 / 63

 0.578 ± 0.098

 949.9 ± 7.1 161.1 ± 11.0

 $\textbf{101.5} \pm \textbf{8.0}$

1051 ± 218.0 393.4 ± 67.4

0.09694 04 ± 6.277e+03

 $N_{events}/(20 ch)$

150

50

250 cosmic signal

ENE = (360 ± 30) KeV

400

pCsI c APD

Измерено на космике

Магнитная система

Супер Чарм-Тау фабрика

ЗАДАЧА:

Создавать аксиальное магнитное поле для восстановления импульса и заряда заряженных частиц

Технические требования

- Длина соленоида 4 м
- Внутренний диаметр 3.2 м
- Внутри соленоида (трековая с и с т е м а , Ф А Р И Ч , электромагнитный калориметр)
- Магнитное поле 1÷1.2 Тл
- Запасенная энергия 28.8 МДж
- Время подъема тока < 4 ч
- Доступ к системам детектора за 12-24 часа
- В ярме должны размещаться мюонные камеры: 9 слоев в баррели и 8 в торце

Эксперимент PANDA (FAIR)

Технические требования

- Длина соленоида 3 м
- Внутренний диаметр 1.9 м
- Магнитное поле 2 Тл ±2%
- Внутри соленоида (трековая, времяпролетная система, черенковские счетчики и электромагнитный калориметр) массой 23 тонны
- В ярме должны размещаться мюонные камеры: 13 слоев в баррели и 6 в торце
- Магнит должен перемещаться с линии пучка и обратно. Время остановки комплекса меньше недели. Положение должно воспроизводиться с точностью лучше 1мм.
- Криогенная система монтируется сверху на ярме.
- ИЯФ планирует заключить контракты:
 - 1. на изготовление магнита;
 - 2. На измерения магнита;
 - Е.Э. Пята, С.Г. Пивоваров и др.

Магнит, ярмо и платформа (PANDA)

Октант ярма (PANDA)

