Детектор для Супер *с*-*т* фабрики.

Рабочее совещание по физической программе Супер c- τ фабрики

А. Барняков

Институт ядерной физики им. Г.И. Будкера СО РАН

Новосибирск 18–19 декабря 2017

1 Введение.

- 2 Детектор для Супер с-т фабрики
 - Вершинный детектор
 - Дрейфовая камера
 - Система идентификации
 - Калориметр
 - Мюонная система
 - Магнитная система

Заключение

Тезис №1

Физическая программа определяет требования к детектору (и коллайдеру).

Тезис №2

От параметров детектора и примененных детекторных технологий зависит реализуемость физической программы.

Тезис №3

Конструкция детектора и коллайдера в месте встречи жестко связаны и могут ограничивать параметры друг друга.

Тезис №1

Физическая программа определяет требования к детектору (и коллайдеру).

Тезис №2

От параметров детектора и примененных детекторных технологий зависит реализуемость физической программы.

Тезис №3

Конструкция детектора и коллайдера в месте встречи жестко связаны и могут ограничивать параметры друг друга.

Для успешного развития проекта все три составляющих (Физ.программа, Коллайдер, Детектор) должны разрабатываться одновременно, учитывая особенности друг друга.

Введение.

Некоторые требования к детектору.

Физическая программа

- Чармоний
 - Редкие распады J/ψ
 - . . .
- т-лептон
 - распады с LFV: $\tau \rightarrow \mu \gamma$
 - Лептонная универсальность
 - . . .

• *D*-мезоны

- СР-нарушение
- (Полу)лептонные распады
- смешивание
- ...
- С-барионы
 - СР-нарушение
 - Редкие распады
 - . . .
- Экзотика ...

Введение.

Некоторые требования к детектору.

Физическая программа	Коллайдер
• Чармоний	• $W = 2 \div 5\Gamma$ эВ
\bullet Редкие распады J/ψ	• $l_{\text{бынча}} - 1 \div 1.8 \text{ см}$
•	• $\Delta t^{\mathrm{банч}} - 6$ нс
• 7-лептон	• IIBK: ø 24/l=900 mm
• распады с LFV: $\tau \to \mu \gamma$ • Лептонная универсальность	$\Phi \Phi + 15^{\circ}$
•	• $L: 10^{35} \text{ cm}^{-1} \text{ c}^{-1}$
• <i>D</i> -мезоны	
• СР-нарушение	
• (Полу)лептонные распады	
• смещивание	

- ...
- С-барионы
 - СР-нарушение
 - Редкие распады
 - . . .
- Экзотика ...

Введение.

Некоторые требования к детектору.

Физическая программа	Коллайдер		
 Чармоний Редкие распады <i>J/ψ</i> 	 W = 2÷5ГэВ l_{бынча} - 1÷1.8 см Δt^{банч} - 6 нс 		
• τ -лептон • распады с LFV: $\tau \rightarrow \mu \gamma$ • Лептонная универсальность •	 ЦВК: Ø 24/l=900 мм ФФ: ±15° L: 10³⁵см⁻¹с⁻¹ 		
• <i>D</i> -мезоны • <i>CP</i> -нарушение	Общие требования к детектору		
• (Полу)лептонные распады • смешивание	• Загрузка ~ 50÷300 кГц • Высокое импульсное и		
• С-барионы	энергетическое разрешение		

- СР-нарушение
- Редкие распады
- . . .
- Экзотика ...

для заряженных и

нейтральных частиц

• Высокая достоверность

 $e/\mu/\pi/K$ -разделения

Схематический вид.

- 1. Вершинный детектор
- 2. Дрейфовая камера
- 3. Система идентификации
- 4. Калориметр
- 5. Сверхпроводящая катушка (
 \sim 1 Тл)
- 6. Ярмо магнита и мюонная система

Универсальный детектор. Вершинный детектор.

Задачи – параметры:

- Регистрация вершин и измерение пробега K_S^0, Λ, \ldots ?
- Регистрация треков в области недоступной для ДК
- Измерение импульса "мягких" частиц (до 50 МэВ/с)?
- $\phi_{\text{внутренний}} \ge 50$ мм; $\phi_{\text{наружный}} \le 600$ мм; L < 900 мм;

Универсальный детектор. Вершинный детектор.

Задачи – параметры:

- Регистрация вершин и измерение пробега K_S^0 , Λ , ...?
- Регистрация треков в области недоступной для ДК
- Измерение импульса "мягких" частиц (до 50 МэВ/с)?
- $\phi_{\text{внутренний}} \ge 50$ мм; $\phi_{\text{наружный}} \le 600$ мм; L < 900 мм;

Универсальный детектор. Вершинный детектор.

Задачи – параметры:

- Регистрация вершин и измерение пробега K_S^0 , Λ , ...?
- Регистрация треков в области недоступной для ДК
- Измерение импульса "мягких" частиц (до 50 МэВ/с)?
- $\phi_{\text{внутренний}} \ge 50$ мм; $\phi_{\text{наружный}} \le 600$ мм; L < 900 мм;

Цилиндрический GEM

- Количество вещества $\sim 1.5X_0$;
- $\sigma_{X-Y} \leqslant 100$ мкм/слой;
- σ_t ≤7 нс;

Цилиндрический GEM (KLOE-2)

Дрейфовая камера.

Задачи:

- Регистрация треков
- Измерение импульса
- Измерение $\frac{dE}{dx}$

Дрейфовая камера.

Задачи:

- Регистрация треков
- Измерение импульса
- Измерение $\frac{dE}{dx}$

Параметры:

- Ø1600:500 мм; *L*=2000 мм;
- 7104 ячеек;
- $He/iC_4H_{10}(80/20);$
- 10 суперслоев: A 4; S 6 ±45÷76мрад;
- $\sigma_x \sim 125$ мкм;
- $\sigma_{t_{\mathrm{AP}}} \leqslant 1$ HC;
- $\frac{\sigma_{dE/dx}}{dE/dx} \leqslant 7.5\%;$
- $\frac{\sigma_{P_t}}{P_t} = (0.13 \pm 0.01)\% \cdot P_t + (0.45 \pm 0.03)\%;$

ДК детектора BaBar: ячейка и dE/dx.

Дрейфовая камера.

Задачи:

- Регистрация треков
- Измерение импульса
- Измерение $\frac{dE}{dx}$

Схема следа от частицы

Координатное разрешение

Кластерный режим

На единичной дрейфовой трубке показано существенное улучшение пространственного и dE/dx разрешения.

Требует более сложной электроники для использования в реальном эксперименте.

Система идентификации.

Задачи:

- *π/К*-разделение для Р≥0.6 ГэВ/с
- μ/π -разделение для Р \leqslant 1.2 ГэВ/с

Современный уровень	Перспективы:
π/K -разделение	π/K -разделение
• TOF: BES-III (MPD NICA) –	• TOF:
$\sigma_t \sim 100 \text{ пс} \rightarrow 3\sigma/0.9(1.5) \text{ ГэB/c}$	$\sigma_t{\sim}50\mathrm{nc} ightarrow3\sigma$ до $1.8(3.0)\Gamma$ э $\mathrm{B/c}$
• DIRC(BaBar)~4 σ до 2.5 ГэВ/с	• $f\mathrm{DIRC}\sim\!\!3\sigma$ до 4.25 ГэВ/с
• АШИФ(КЕДР)~4 σ до 1.5 ГэВ/с	• ФАРИЧ ${\geqslant}3\sigma$ до 6 ГэВ/с
μ/π -разделение при Р $pprox 1$ ГэВ/с	μ/π -разделение при Р $pprox 1$ ГэВ/с
• Belle $\sim 2.5 \div 2.8\sigma$	• ФАРИЧ ~5 0

Система идентификации: ФАРИЧ

Результаты испытаний прототипа ФАРИЧ на основе DPC Philips в 2012г.

Универсальный детектор. Система идентификации: ФАРИЧ

Параметры:

- Фокусирующий аэрогель, n_{max}=1.07, 4 слоя
- Площадь радиатора: 17 м²

- Фотонные детекторы (3×3 мм²):
 - Барель КФЭУ (16 м²)
 - Торец КФЭУ, ФЭУ с МКП?, HAPD? (5 ${\rm M}^2$)
- 10⁶ каналов электроники
- загрузка 0.5÷1.0 МГц/канал
- требуется система охлаждения

Универсальный детектор. Калориметр.

Задачи:

- $\bullet\,$ регистрация и измерение энерги
и γ от 1 МэВ до 2 ГэВ
- определение координат фотонов
- e/hadr-разделение
- формирование нейтрального триггера

Параметры:

•
$$\frac{\sigma_E}{E} = 1.8\%(1 \ \Gamma \Rightarrow B) - CsI(TI)$$

•
$$\sigma_z \approx \frac{6_{\rm MM}}{\sqrt{E(\Gamma \Rightarrow {\rm B})}}$$

pCsI:

- 16 \div 18 $X_0 \rightarrow$ 30 \div 34 см
- $\tau \approx 30$ нс $(1 \ \mu c \ y \ CsI(Tl))$
- 5248 кристаллов \rightarrow 26 \div 31 т
- Фотопентоды или ЛФД+WLS

Схематический вид системы в разрезе

Калориметр.

	ρ, g/cm ³	X ₀ , cm	λ _{em,} nm	n(<u>)</u> em, nm)	N _{ph} /MeV	T, ns
CsI(TI)	4.51	1.85	550	1.8	52000	1000
pCsI	4.51	1.85	305	2	2000-5000	20
LSO	7.4	1.14	440	1.87	25000	40
(Lu ₂ SiO ₅)						
LYSO (Lu ₂ Y ₂ SiO ₅)	7.4	1.10	430	1.82	31000	40
GSO (Cd ₂ SiO ₅)	6.7	1.38	375	1.87	8000	50

- Основной недостаток кристаллов со структурой ортосиликатов стоимость в 5÷10 раз больше CsI(Tl)
- 15÷20 X₀ достигается при меньшей толщине
- Меньше радиус мольера \rightarrow лучше пространственное разрешение
- Световыход лучше, чем у pCsI, максимум высвечивания в области видимого света

С учетом экономии на объеме, фотодетекторах и сверхпроводящем соленоиде, возможно, – это не слишком дорогая опция?!

Задачи – параметры:

- µ/hadr-разделение
- μ/π -разделение по пробегу
 - баррель 9 слоев в ярме (64%×4π)
 - торец 8 слоев в ярме (30%×4π)
- $S_{\rm системы} \approx 1000 {\rm m}^2$

Задачи – параметры:

- µ/hadr-разделение
- μ/π -разделение по пробегу
 - баррель 9 слоев в ярме (64%×4π)
 - торец 8 слоев в ярме (30%×4π)
- $S_{\rm системы} \approx 1000 {\rm m}^2$

μ/π -разделение

- BaBar: 64%/2% при P=0.5÷2 ГэВ/с
- Belle: 90%/2% при Р≥1 ГэВ/с
- КЕДР: 95%/5% при Р≥1 ГэВ/с

Подавление $\pi \ge 100$ раз возможно совместно с ФАРИЧ

Задачи – параметры:

- µ/hadr-разделение
- μ/π -разделение по пробегу
 - баррель 9 слоев в ярме (64%×4π)
 - торец 8 слоев в ярме (30%×4π)
- $S_{\rm системы} \approx 1000 {\rm m}^2$

Стримерные трубки

- технология, электроника
- старение?, загрузочная способность?, ...
- КЕДР, КМД, \overline{P} ANDA, ...

μ/π -разделение

- BaBar: 64%/2% при P=0.5÷2 ГэВ/с
- Belle: 90%/2% при Р≥1 ГэВ/с
- КЕДР: 95%/5% при Р≥1 ГэВ/с

Подавление $\pi \ge 100$ раз возможно совместно с ФАРИЧ

Задачи – параметры:

- µ/hadr-разделение
- μ/π -разделение по пробегу
 - баррель 9 слоев в ярме (64%×4π)
 - торец 8 слоев в ярме (30%×4π)
- $S_{\rm системы} \approx 1000 {\rm m}^2$

μ/π -разделение

- ВаВаг: 64%/2% при P=0.5÷2 ГэВ/с
- Belle: 90%/2% при Р≥1 ГэВ/с
- КЕДР: 95%/5% при Р≥1 ГэВ/с

Подавление $\pi \ge 100$ раз возможно совместно с ФАРИЧ

Стримерные трубки

- технология, электроника
- старение?, загрузочная способность?, ...
- КЕДР, КМД, \overline{P} ANDA, ...

RPC

- пространственное и временное разрешение
- старение, электроника
- Belle (KEK), BaBar (SLAC), ...

Задачи – параметры:

- µ/hadr-разделение
- μ/π -разделение по пробегу
 - баррель 9 слоев в ярме (64%×4π)
 - торец 8 слоев в ярме $(30\% \times 4\pi)$
- $S_{\rm системы} \approx 1000 {\rm m}^2$

μ/π -разделение

- BaBar: 64%/2% при P=0.5÷2 ГэВ/с
- Belle: 90%/2% при Р≥1 ГэВ/с
- КЕДР: 95%/5% при Р≥1 ГэВ/с

Подавление $\pi \ge 100$ раз возможно совместно с ФАРИЧ

Стримерные трубки

- технология, электроника
- старение?, загрузочная способность?, ...
- КЕДР, КМД, \overline{P} ANDA, ...

RPC

- пространственное и временное разрешение
- старение, электроника
- Belle (KEK), BaBar (SLAC), ...

Сцинтиллятор + WLS + $MA\Phi \Im Y$

- простота в эксплуатации
- цена?
- MINOS (FNAL)

Требования к магнитной системе

- Длина соленоида 4 м
- Внутренний диаметр 3.2 м
- Внутри соленоида (трековая система, ФАРИЧ, калориметр)
- Магнитное поле 1÷1.2 Тл
- Запасенная энергия 28.8 МДж
- Время подъема тока $\leqslant 4$ ч
- Доступ к системам детектора за 12÷24 часа
- В ярме должны размещаться мюонные камеры: 9 слоев в баррели и 8 в торце

Очень схож по требованиям магнит для дететкора PANDA (FAIR).

- В ИЯФ СО РАН создана концепция универсального детектора, учитывающая современный уровень развития детекторных технологий и отвечающая требованиям первой версии физической программы с учетом некоторых параметров коллайдера.
- Необходима актуализация и детальная проработка физической программы для выработки более четких требований к детектору и его системам.
- Для каждой системы детектора существует несколько опций, выбор которых должен происходить как на основании требований физической программы, так и на основании их методической и технической проработанности опции.
- Для создания технического проекта детектора необходимо начинать проработку базовых и не основных опций систем детектора на уровне специализированных прототипов, для чего необходимо создание широкой внутрироссийской и международной коллаборации.

Детектор

ФАРИЧ метод (*Мотивация*)

Пороговый импульс

 $\Delta \Theta_c(n)$

Д. Епифанов и др.

Магнитная система

Супер Чарм-Тау фабрика

Эксперимент PANDA (FAIR)

<u>ЗАДАЧА:</u>

Создавать аксиальное магнитное поле для восстановления импульса и заряда заряженных частиц

Технические требования

- Длина соленоида 4 м
- Внутренний диаметр 3.2 м
- Внутри соленоида (трековая система, ФАРИЧ, электромагнитный калориметр)
- Магнитное поле 1÷1.2 Тл
- Запасенная энергия 28.8 МДж
- Время подъема тока < 4 ч
- Доступ к системам детектора за 12-24 часа
- В ярме должны размещаться мюонные камеры: 9 слоев в баррели и 8 – в торце

Технические требования

- Длина соленоида 3 м
- Внутренний диаметр 1.9 м
- Магнитное поле 2 Тл ±2%
- Внутри соленоида (трековая, времяпролетная система, черенковские счетчики и электромагнитный калориметр) массой 23 тонны
- В ярме должны размещаться мюонные камеры: 13 слоев в баррели и 6 в торце
- Магнит должен перемещаться с линии пучка и обратно. Время остановки комплекса – меньше недели. Положение должно воспроизводиться с точностью лучше 1мм.
- Криогенная система монтируется сверху на ярме.
- ИЯФ планирует заключить контракты:
 - 1. на изготовление магнита;
 - 2. На измерения магнита;
 - Е.Э. Пята, С.Г. Пивоваров и др.

Магнит, ярмо и платформа (PANDA)

Октант ярма (PANDA)

