SCTAU: PARAMETRIC SIMULATION: PID

G. P. Razuvaev

1st February, 2019

ToF

The ToF conception is implemented: propagation in the axial magnetic field and hitting the cylinder with holes in endcaps. No dE/dx, no scattering. ToF

Interaction point smearing 20 ps (the same across an event). ToF time measurement smearing 35 ps.

FARICH

AShiPh

Generator data

Papas

Tracker, calorimeter, solenoid Detector response Reconstructed particles

PID systems

Background and fake particles

User tree maker

Papas has only one build-in tracker. The complex response represented DC + IT should be implemented:

```
i if pt < 0.1:
    return False
    elif pt < 0.3:
    return rnd < 0.9
    elif pt < 1.:
    return rnd < 0.95
    else:
    return rnd < 0.99</pre>
```

The BaBar DC resolution model has been used.

$$rac{\sigma}{
m p_T}=0.13\,\% imes
ho_T+0.45\,\%$$

A hadron calorimeter is suppressed.

The electromagnetic calorimeter parameters are taken from D. A. Epifanov's CHARM-18 satellite presentation (pure Csl).

$$\frac{\sigma_E}{E} = \frac{0.82\,\%}{\sqrt[4]{E}} \oplus \frac{0.066\,\%}{E} \oplus 1.34\,\%$$

Different calorimeter options are possible, but paramitrization is required.