Coherent DD states at Super c/τ -factory

A.Bondar

- 1. CKM matrix and ϕ_3
- 2. Model-Independent Method
- 3. CLEO-c Results
- 4. D-mixing
- 5. Time integrated Method for D-mixing measurement
- 6. Conclusion

The UTA within the Standard Model

The experimental constraints:

 $\epsilon_{\kappa}, \Delta m_{d}, \left| \frac{\Delta m_{s}}{\Delta m_{d}} \right|, \left| \frac{V_{ub}}{V_{cb}} \right| \xrightarrow{\text{relying on theoretical calculations}} of hadronic matrix elements \\ sin \mathcal{B}, cos \mathcal{B}, \alpha, \gamma (2\beta + \gamma) \xrightarrow{\text{independent from theoretical calculations}} independent from theoretical calculations} \\$

overconstrain the CKM parameters consistently

The UTA has established that the CKM matrix is the dominant source of flavour mixing and CP violation

From a closer look

(excluding its exp. constraint)							
	Prediction	Measurement	Pull				
sin2β	0.771±0.036	0.654±0.026	2.6 ←				
γ	69.6°±3.1°	74°±11°	<1				
α	85.4°±3.7°	91.4°±6.1°	<1				
$ V_{cb} \cdot 10^3$	42.69±0.99	40.83±0.45	+1.6				
$ V_{ub} \cdot 10^3$	3.55±0.14	3.76±0.20	< 1				
ε _κ · 10³	1.92±0.18	2.230±0.010	-1.7 ←				
$BR(B \rightarrow \tau \nu) \cdot 10^4$	0.805±0.071	1.72±0.28	-3.2 ←				

$B^+ \rightarrow D^0 K^+$ decay

CP violation enters the Standard Model as a complex phase \Rightarrow only observable in the interference. To measure φ_3/γ , use interference on V_{ub} and V_{cb} amplitudes:

Amplitudes interfere if D^0 and \overline{D}^0 decay into the same final state $|D^0\rangle + re^{i\theta}|\overline{D}^0\rangle$ Relative phase: $\theta = -\varphi_3 + \delta$ ($B^- \rightarrow DK^-$), $\theta = \varphi_3 + \delta$ ($B^+ \rightarrow DK^+$) includes weak (φ_3/γ) and strong (δ) phase.

Magnitude of CP violation is determined by the ratio of the two amplitudes:

$$r_{B} = \left| \mathcal{A}(B^{-} \to D^{0}K^{-}) / \mathcal{A}(B^{-} \to \overline{D}^{0}K^{-}) \right| = \left| \frac{V_{ub}^{*}V_{cs}}{V_{cb}^{*}V_{us}} \right| \times [\text{color supp.}]$$

A.Bondar, Budker INP

October 19 Second Super c/τ-factory Workshop

Dalitz analysis method

A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003) A. Bondar, Proc. of Belle Dalitz analysis meeting, 24-26 Sep 2002.

 $\left| D^{0} \right\rangle + r e^{i\theta} \left| \overline{D}^{0} \right\rangle$

Using 3-body final state, identical for D^0 and \bar{D}^0 : $K_s \pi^+ \pi^-$.

Dalitz distribution density: $\frac{dp(m_{K_{S}\pi^{+}}^{2}, m_{K_{S}\pi^{-}}^{2}) \sim |f_{D}|^{2} dm_{K_{S}\pi^{+}}^{2} dm_{K_{S}\pi^{-}}^{2}}{f_{D}(m_{K_{S}\pi^{+}}^{2}, m_{K_{S}\pi^{-}}^{2})} = \left| \int_{-\infty}^{\infty} \frac{1}{1 + re^{i\delta \pm i\phi_{3}}} \int$

(assuming CP-conservation in D⁰ decays)

CPV can be observed as difference in the Dalitz distribution densities for D originated from B⁺ and B⁻

If $f_D(m_{K_S\pi^+}^2, m_{K_S\pi^-}^2)$ is known, parameters $(\varphi_3/\gamma, r_B, \delta)$ are obtained from the fit to Dalitz distributions of $D \rightarrow K_s \pi^+ \pi^-$ from $B^{\pm} \rightarrow DK^{\pm}$ decays

Need to know a complex form of the D^0 decay amplitude, but only $|f_D|^2$ is obtained from $D^* \rightarrow D\pi$

 \Rightarrow Need to use model description, model uncertainty as a result

A.Bondar, Budker INP

Binned analysis

A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003)

A. Bondar, A. Poluektov, Eur.Phys.J. C 55, 51 (2008)

Model-independent way: obtain D^0 decay strong phase from $\psi(3770) \rightarrow DD$ data

Binned analysis: $(K_{s}\pi^{+}\pi^{-})^{2}$

2 correlated Dalitz plots, 4 dimensions:

$$< N >_{ij} = K_i K_{-j} + K_j K_{-i} - 2\sqrt{K_i K_{-i} K_j K_{-j}} (c_i c_j + s_i s_j)$$

$$c_{i} = \frac{\int_{D_{i}} \sqrt{p_{D} \overline{p}_{D}} \cos(\Delta \delta_{D}(m_{+}^{2}, m_{-}^{2})) dD}}{\sqrt{\int_{D_{i}} p_{D} dD \cdot \int_{D_{i}} \overline{p}_{D} dD}} \qquad s_{i} = \frac{\int_{D_{i}} \sqrt{p_{D} \overline{p}_{D}} \sin(\Delta \delta_{D}(m_{+}^{2}, m_{-}^{2})) dD}}{\sqrt{\int_{D_{i}} p_{D} dD \cdot \int_{D_{i}} \overline{p}_{D} dD}}$$

Can use maximum likelihood technique:

$$-2\log \mathcal{L} = -2\sum \log p_{Poisson}(N_{ij}, \langle N \rangle_{ij}) \rightarrow \min$$

with c_i and s_i as free parameters.

For the same binning as in D_{CP} , number of bins is \mathcal{N} (instead of \mathcal{N}), but the number of unknowns is the same. With Poisson PDF, it's OK to have N_{ij} <1. Can obtain both c_i and s_i .

8

Model-independent approach: toy MC

A. Bondar, A. Poluektov, Eur.Phys.J. C 55, 51 (2008)

October 19 Second Super c/τ-factory Workshop

Model-independent approach

Introduce the binning of the phase space (i=-N, N). Number of events:

$$\langle N \rangle_i = h_B [K_i + r_B^2 K_{-i} + 2\sqrt{K_i K_{-i}} (xc_i + ys_i)]$$

contains only the terms that can be obtained experimentally, does not depend on the amplitude structure inside the bin.

Optimal binning — stat. precision comparable to unbinned measurement

CLEO-c measurement: [arXiv:0903.1681, PRD 80 032002(2009)]. Expect 2-3° contribution CLEO-c (NEW) [arXive:1010.2817]

D Mixing

Improve precision of parameters of two mass eigenstates:

 $x_{D} = (m_{2}-m_{1})/\Gamma; \quad y_{D} = (\Gamma_{2}-\Gamma_{1})/(2\Gamma);$

|q/p| and $\phi_M = Arg \{q/p\}$ where

 $D^{0} = p D_{1} + q D_{2}$ and $\overline{D}^{0} = p D_{1} - q D_{2}$

- Search for CPV
- Examine whether CPV originates from the mixing $(p \neq q)$, from decay $(Arg{A_f} \neq Arg{\overline{A_f}})$ or decay/mixing interference.
- Aim for precision in (x_D, y_D) of ~10⁻⁴
- Allows ,measurement of asymmetries in D⁰ and D⁰ parameters in various decay modes (direct CPV?)

Mixing Measurements

 All current measurements exploit interference between direct decays and decays through mixing:

• Time-dependence (no CPV, to 2nd order in *x* and *y*)

$$\frac{dN/dt \sim e^{-\Gamma t} x \left[r_{f}^{2} + r_{f} \left(y_{D} \cos \delta_{f} - x_{D} \sin \delta_{f}\right) \Gamma t}{decay} \Gamma t}{r_{f}^{2} + y_{D}^{2} \left(\Gamma t\right)^{2}}\right]$$

$$\frac{Direct}{decay}$$
Interference term is approximately linear in x_{D} , y_{D}

But Γ_f and δ_f are, generally, unknown

• So can usually only measure the rotated quantities

 $x'_D = x_D \cos \delta_f + y_D \sin \delta_f$ AND $y'_D = y_D \cos \delta_f - x_D \sin \delta_f$

unless measurements of δ_f from charm threshold are available.

Mixing Measurements

- WS decays $D^0 \rightarrow K^+\pi^-$: $\Box \delta_f$ unknown, $r_f^2 = R_{DCS} - \text{measure}(x_D^{'2}, y_D^{'})$
- WS decays $D^0 \rightarrow K^+\pi^-\pi^0$: $\Box \delta_f$ unknown, r_f from decay model – measure (x_D, y_D)
- "Lifetime" diff for $D^0 \rightarrow K^+K^-$ & $K^+\pi^-$: - Measure y_{CP} • "Golden channels" $D^0 \rightarrow K_s h^+h^ \Box \delta_f = 0$ - measure (x_D, y_D) directly,

PRD 78:011105 (2008) PRD 80:071103 (2009)

Arxiv:1004.5053 (2010) accepted by PRL

ALSO measures |q/p| and Arg{q/p} ! BUT

Introduces irreducible model uncertainty, IMU

A.Bondar, Budker INP

13

October 19 Second Super c/τ-factory Workshop

Uncertainties shrink: but are limited by the IMU (biggest effect on x_D) Strong phase measurement from $\psi(3770)$ can greatly reduce this. $x_D \rightarrow xxx \pm 2.0 \times 10^{-4}$ $y_D \rightarrow xxx \pm 1.2 \times 10^{-4}$

Effect of D mixing in the quantumcorrelated DD decays

[Z.Z.Xing, PRD 55, 196, (1997), D.Asner, W.Sun, hep-ph/0507238]

Effect of D mixing depends on C-parity of DD state.

For $(K_S \pi^+ \pi^- \text{ vs } K_S \pi^+ \pi^-)$ events. C=-1:

$$N_{ij}^{\prime(asym)} = K_i K_{-j} + K_{-i} K_j - 2\sqrt{K_i K_{-i} K_j K_{-j}} (c_i c_j + s_i s_j) + O(x_D^2, y_D^2)$$

For C=+1:

$$\begin{split} N_{ij}^{\prime(sym)} &= K_i K_{-j} + K_{-i} K_j + 2\sqrt{K_i K_{-i} K_j K_{-j}} (c_i c_j + s_i s_j) + \\ &\quad 2\sqrt{K_i K_{-i}} K_j (y_D c_i - x_D s_i) + 2\sqrt{K_i K_{-i}} K_{-j} (y_D c_i + x_D s_i) + \\ &\quad 2\sqrt{K_j K_{-j}} K_i (y_D c_j - x_D s_j) + 2\sqrt{K_j K_{-j}} K_{-i} (y_D c_j + x_D s_j) + \\ &\quad O(x_D^2, y_D^2) \end{split}$$

A.Bondar, Budker INP

• $K_S \pi^+ \pi^-$ - Instrument for strong phase measurement in the hadronic D-meson decays

•Difference in the $K_S \pi^+ \pi^-$, $K^+ \pi^- \pi^0$, $K^+ \pi^- \pi^+ \pi^-$ Dalitz plot distributions for even and odd DD states can be used for CPV and Mixing parameters measurement in the time integrated mode !

•How create even and odd DD correlated states?

17

decays

Pure J^{PC} = 1⁻⁻ initial state -

Flavor tags (K⁻ π^+ , K⁻ π^+ π^0 , K⁻ π^+ $\pi^-\pi^+$), Semileptonic (Xev)

A.Bondar, Budker INP

October 19 Second Super c/τ-factory Workshop

 $e^+e^- \rightarrow K_S \pi^+\pi^- + K^+\pi^- (CLEO-c)$

 $e^+e^- \rightarrow D^0 D^{*0} \rightarrow (K_S \pi^-\pi^+)_D (K^+I^-\nu)_D \pi^0$

 $e^+e^- \rightarrow D^0 D^{*0} \rightarrow (K_S \pi^-\pi^+)_D (K^+l^-\nu)_D \gamma$

Data Samples (CLEO-c, 818 pb⁻¹)

CLEO-c [arXiv:0903.1681, PRD 80 032002(2009)]

TABLE II: S	Single tag	and	$K^{0}_{S/L}\pi^{+}\pi^{-}$	double	tag	yields.
-------------	------------	----------------------	-----------------------------	-------------------------	----------------------	---------

Mode	ST Yield	$K_S^0 \pi^+ \pi^-$ yield	$K_L^0 \pi^+ \pi^-$ yield					
Flavor Tags								
$K^-\pi^+$	144563 ± 403	1447	2858					
$K^-\pi^+\pi^0$	258938 ± 581	2776	5130					
$K^-\pi^+\pi^+\pi^-$	220831 ± 541	2250	4110					
$K^- e^+ \nu$	123412 ± 4591	1356	-					
CP-Even Tags								
K^+K^-	12867 ± 126	124	345					
$\pi^+\pi^-$	5950 ± 112	62	172					
$K^0_S\pi^0\pi^0$	6562 ± 131	56	-					
$K^0_L\pi^0$	27955 ± 2013	229	-					
CP-Odd Tags								
$K_S^0 \pi^0$	19059 ± 150	189	281					
$K^0_S \eta$	2793 ± 69	39	41					
$K^0_S \omega$	8512 ± 107	83	-					
$K^0_S\pi^+\pi^-$	-	475	867					

Expected Data yields for 1000 fb⁻¹ (one year data taken at L=10³⁵):

~ 3,5 10⁶ K_s $\pi^+\pi^-$ vs K⁻ I⁺v

- ~ 16 10⁶ K⁺ $\pi^{-}\pi^{0}$ vs K⁻ I⁺ ν (3,5 10⁴ WS)
- ~ 10,5 10⁶ K⁺ $\pi^{+}\pi^{-}\pi^{-}$ vs K⁻ I⁺ ν (3,0 10⁴ WS)

- ~ 0,5 10⁶ K_s $\pi^{+}\pi^{-}$ vs K_s $\pi^{+}\pi^{-}$
- ~ 2,7 10⁶ K_s $\pi^+\pi^-$ vs K⁺ $\pi^-\pi^0$
- ~ 2,5 10⁶ K_s $\pi^+\pi^-$ vs K⁺ $\pi^+\pi^-\pi^-$
- ~ 1,5 10⁶ K_s $\pi^+\pi^-$ vs K⁺ π^-
- ~7,0 10⁴ K⁺ $\pi^{-}\pi^{0}$ vs K⁺ $\pi^{-}\pi^{0}$

MC Sensitivity ($K_S \pi^+ \pi^- + K^+ l^- \nu$) 1ab⁻¹

If sensitivity of other states is comparable, the total statistical uncertainty should be 2-3 times better.

Conclusion

- Dalitz analysis is most sensitive method for φ_3/γ measurements now
- Combining all B-factory results, there is strong evidence of CP violation in $B \rightarrow DK$. Good agreement between different measurements, both in r_B and γ/φ_3
- Future φ_3/γ statistical precision will be limited by model uncertainty. Model-independent Dalitz analysis using charm data from Super c/t-factory will allow to achieve the order of one degree accuracy
- Dalitz method can be extended to D-mixing measurements in the time integrated mode. Sensitivity of the Super C/τ – factory can be competitive to Super B-factories sensitivity