Calorimeter for $c-\tau$ -factory based on pure CsI crystals. Nov 18, 2010 A.Kuzmin

Outline:

- Pure CsI
- Belle calorimeter
- Photodetectors
- Beam test
- Radiation tests
- Calorimeter design
- Electronics
- Summary

Requirements for $c-\tau$ -factory

- To detect photons and measure their energy and coordinates from 10 MeV upto 2 GeV
 - Thick enough active material to have good energy resolution in wide energy range
 - Fast scintilator to have small pile-up noise
 - Good time resolution to suppress beam background
 - As thin passive material in front of the calorimeter as possible
- e/hadron-separation

Background? Similar to B-factory: 1.5 $A \times 1.5 A 3.5$, 8 GeV

Crystals with short decay time.

crystal	ho,	$\mathbf{X}_{0},$	$\lambda_{em},$	n	N_{ph}/MeV	au,
	$\mathbf{g/cm}^3$	cm	nm			ns
CsI(Tl)	4.51	1.86	550	1.8	52000	1000
CsI	4.51	1.86	305/400	2	5000	30/1000
BSO	6.8	1.15	480	1.9	5000	100
${f LaBr_3(Ce)}$	5.29	1.88	440	1.9	60 000	26
\mathbf{PbWO}_4	8.28	0.89	430	2.2	25	10
${f LuAlO_3(Ce)}$	8.34	1.08	365	1.94	20500	18
$\mathbf{Lu}_{3}\mathbf{Al}_{5}\mathbf{O}_{12}(\mathbf{Ce})$	7.13	1.37	510	1.8	5600	60
${f Lu}_2{f SiO}_5({f Ce})$	7.41	1.2	420	1.82	26000	12/40

 \mathbf{PWO} – too small lo.

LaBr₃ – very higroscopic and expensive

BSO – no mass production

 $LuAlO_3(Ce)$ and $Lu_2SiO_5(Ce)$ are good but very expensive.

Pure CsI scintillator has shorter decay time and is a good candidate as material for the Belle endcap calorimeter.

Additional test with pure CsI

Belle ECL

CsI(Tl)

- Crystals 300x(50-80)x(50-80) mm
- Wrapping 200 μm teflon+50 μm Al mylar
- Readout 2 10x20 mm PIN diodes
- 2 charge sensitive preamplifiers
- Shaper CR-(RC)⁴, $\tau = 1 \mu s$
- Lightoutput 5000 p.e./MeV
- Electronic noise $1000e \approx 200 \text{ keV}$

- Calorimeter based on CsI(Tl) scintillating crystals
- Thickness 16.1 X_0 (30 cm)
- Calorimeter is inside magnetic coil
- CDC+ACC is about 0.3 X_0
- 8736 counters (40 tons of CsI(Tl))

ECL performance

- Calorimeter has succefully been working for 10 years
- Only one channel died during this period
- Good performance

Test photon beam.

5 x 5 matrix with 0.5 MeV threshold

Radiation hardness test with photons.

- Radiation hardness of 4 pure CsI crystals and one counter (pure CsI crystal+ photopentode) were tested with γ -quantum irradiation.
- For 15 krad dose the degradation of the lightoutput for 3 crystals and counter was less than 10%, but one counter about 60%. However it was recovered for about 80% within an year.

Pure CsI crystals were irradiated by neutrons. Neutron irradiation up to $10^{12} cm^{-2}$ did not reveal a degradation within 5%.

$CsI(Tl) \rightarrow pure \ CsI$

- Lightoutput ten times less
- Decay time 30 ns
- 300 nm UV-light

Photodetector

Requirements for photodetectors

- UV-sensitive
- large sensitive area
- low capacity $(\sigma_{noise} \sim \frac{C}{\sqrt{\tau}})$
- gain factor more than 30 in magnetic field
- good stability, compact, not expensive...

PIN diode - large noise/signal APD - large noise/signal due to capacity

Hamamatsu developed the 2' UV sensitive phototriodes, phototetrodes, photopentods $C \approx 10 \ pF$.

Dependence of gain factor on voltage is close to linear.

Magnetic field

Counters design

Pileup noise measurement.

- Pile-up noise was imitated by ${}^{60}Co(E_{\gamma} = 1.17/1.33 \ MeV)$ at different distances from counters.
- The pure CsI counter with new electronics and CsI(Tl) Belle counter were tested
- The measurements are in agreement with estimations: pileup noise of pure CsI is factor 5.5 less than for Tl doped crystals.

Beam test

 $\omega_{max} = 70 \sim 160 MeV$

A.Kuzmin, Calorimeter for c-au -factory based on pure CsI crystals , Nov 18, 2010

12 p.

Beam test results.

Energy resolution is obtained from fit of the distributions by convolution of the Compton spectrum and \logarithmic -Gaussian(σ).

Energy resolution is consistent with MC and previous beam test results.

Time resolution

Wave form analysis allows to determine time with accuracy better then 1 ns for E > 20 MeV(60 MeV in magnetic field).

Long-term stability of PP depending on light illumination

- Counter was illuminated by LED to simulate 1 kRad/year
- Cosmic peak position was measured depending on the collected integral.

• No essential degradation up to 140 Q was observed

14

p.

Crystal size: truncated pyramid with small size $\sim 5.5 \times 5.5 \ cm^2$ and lenghth 30(34) cm (16.1(18.2) X_0)

In barrel it will correspond to 41 rings with 128 crystals in each of 21 types.

total barrel: $\Sigma = 5248$ weight ~ 26(31)t. Endcaps: 14 rings $(3 \times 128 + 3 \times 96 + 4 \times 64 + 2 \times 48 + 2 \times 32)$ total endcaps: $\Sigma = 1088 \times 2$ weight 5(6) $t \times 2$ Total: 7424 counters, 36(43) t. ~ 35(40)M\$ PP: 7424 ~ 7 M\$ Electronics: 7424 channels ~ 4 M\$

A.Kuzmin, Calorimeter for c-au -factory based on pure CsI crystals , Nov 18, 2010

15

p.

Electronics

- Belle II-like electronics
- Preamplifiers are located at counters
- Shaping, digitizing and fitting are done in Shaper DSP module located nearby detector
- Shaper $\tau = 30ns \ CR + (RC)^4$ (Integration active Bessel filter)
- Amplitude, Pedestal and time are fitted in FPGA

FPGA Electronics

Tested with Belle calorimeter

Alternative Photodetectors

16 APD 5×5 mm² with PA Shaping time 100 ns ENC≈0.5-0.9 MeV

Advantages:

- Easy for mechanical design
- More robust

Disadvantages: Larger ENC. Stability?

Other options

Summary

- Pure CsI + PP counters is a good candidate for $c \tau$ -factory calorimeter which provide high energy and position resolution
- Belle-II-type electronics can be adopted for this calorimeter
- The calorimeter provides good time resolution and can work in the high occupancy conditions.