Система идентификации ФАРИЧ

А.Ю. Барняков, М.Ю. Барняков, В.Е. Блинов, А.Р. Бузыкаев, В.В. Гулевич, <u>С.А. Кононов</u>, Е.А. Кравченко, И.Куянов, А.П. Онучин

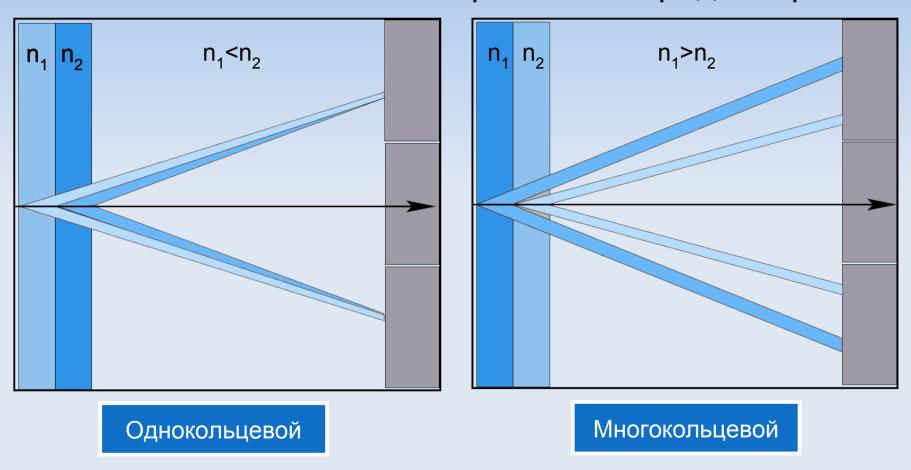
Институт Ядерной Физики им. Будкера

А.Ф. Данилюк

Институт Катализа им. Борескова

Рабочее совещание по проекту ст-фабрики 18-19 октября 2010 г. ИЯФ, Новосибирск

Зачем нужна система идентификации?

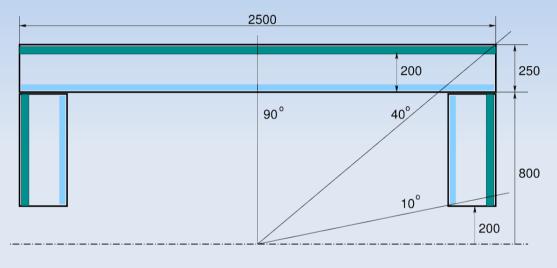

- Восстановление и тагирование *D*-мезонов (*K* в к.с.), барионов (*p* в к.с.) подавление комбинаторного фона
- Поиск редких распадов уменьшение фона
- Мюонное тагирование распада τ удвоение эффективности лептонного тагирования
- Поиск LFV τ→μγ (проектная чувствительность Br≤10⁻⁹) — подавление фона от τ→ππ⁰ν_τ (μ/π разделение)
- Все современные детекторы имеют отдельную систему идентификации частиц

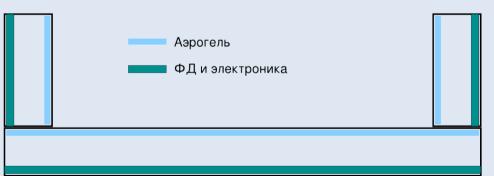
Существующие методы идентификации частиц с импульсом порядка 1 ГэВ/с

- Традиционные методы dE/dx,TOF: π/K для P≤0.7 ГэВ/с
- Мюонная система: µ/π для Р≥~1 ГэВ/с
- Пороговые черенковские счетчики на основе аэрогеля: работают между порогами π и К (0.6-1.5 ГэВ/с при n=1.05)
- RICH с жидкими (C6F14) и твердыми (LiF, NaF) и радиаторами: DELPHI, SLD, CLEOIII, ALICE и др.
- DIRC (Detector of Internally Reflected Cherenkov light) впервые реализован на BaBar, успешная и надежная методика, получившая продолжение в проектах для BelleII, SuperB, PANDA, WASA
- Аэрогелевый RICH впервые применен на HERMES (1998), установлен на LHCb, рассматривается для BelleII

ФАРИЧ

RICH с многослойным аэрогелевым радиатором

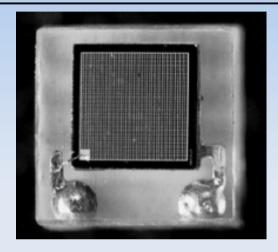



Уменьшение ошибки черенковского угла по сравнению с одним слоем достигается за счет уменьшения вклада толщины в ошибку.

Почему ФАРИЧ?

- Наилучшее разрешение по скорости частицы по сравнению с другими методами в этом диапазоне импульсов
- Позволяет разделять µ и π в районе 1 ГэВ/с и ниже, что трудно достижимо другими методами
- Сложно реализовать в барели из-за магнитного поля → необходимы фотодетекторы нечувствительные к магнитному полю (Г-ЛФД)

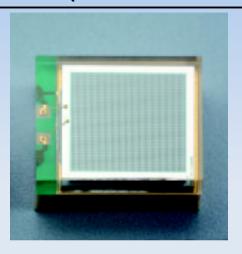
Система ФАРИЧ для ст фабрики



Параметры

- Фокусирующий аэрогелевый радиатор: n_{max} = 1.07, 4 слоя обсуждается использование NaF для малых импульсов
- ФД: MPPC 3х3мм² с шагом 4 мм
- Площадь ФД: 21 м²
- ~1 млн. каналов

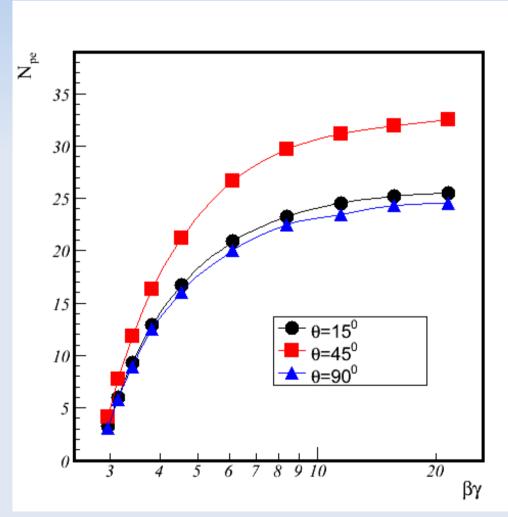
Фотонный детектор: Г-ЛФД

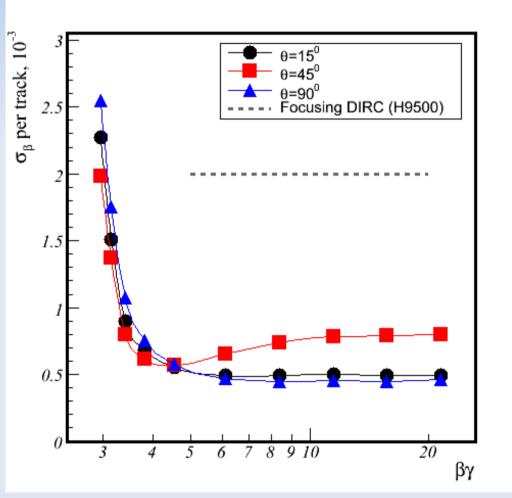

MRS APD (ЦПТА)

- Модель 149-35
- 2.1x2.1 mm²
- Частота шумов 10 МГц
- PDE(600hm) = 40%
- Усиление ~ 4·10⁵

Есть версия с Ғшум~1МГц

MPPC (Hamamatsu)

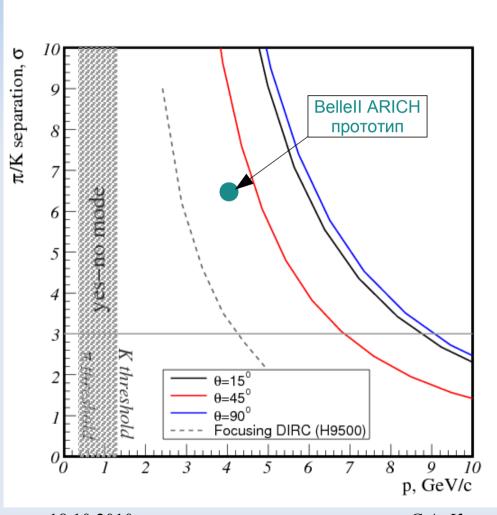

- Модель S10391-050
- 3x3 мм²
- Частота шумов 6 МГц
- PDE(500нм)=30%
- Усиление 8·10⁵

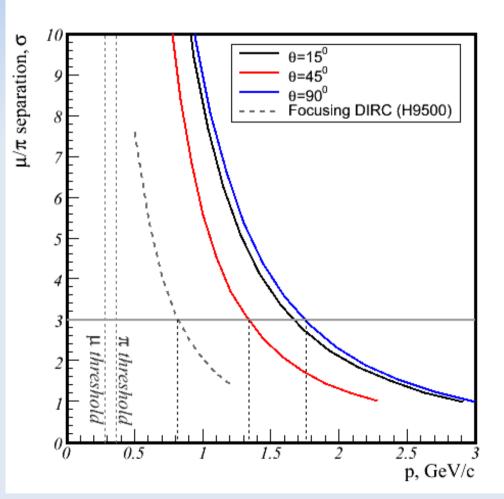

Не поставляется в Россию

Моделирование

Число фотоэлектронов

Разрешение по скорости

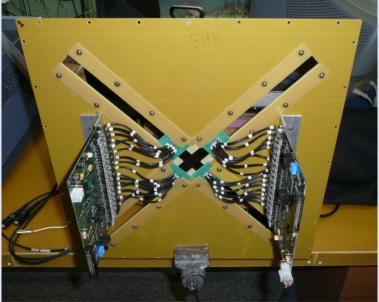


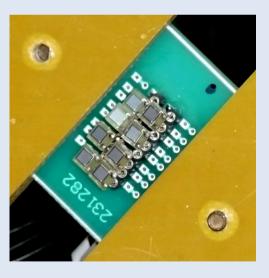


Моделирование

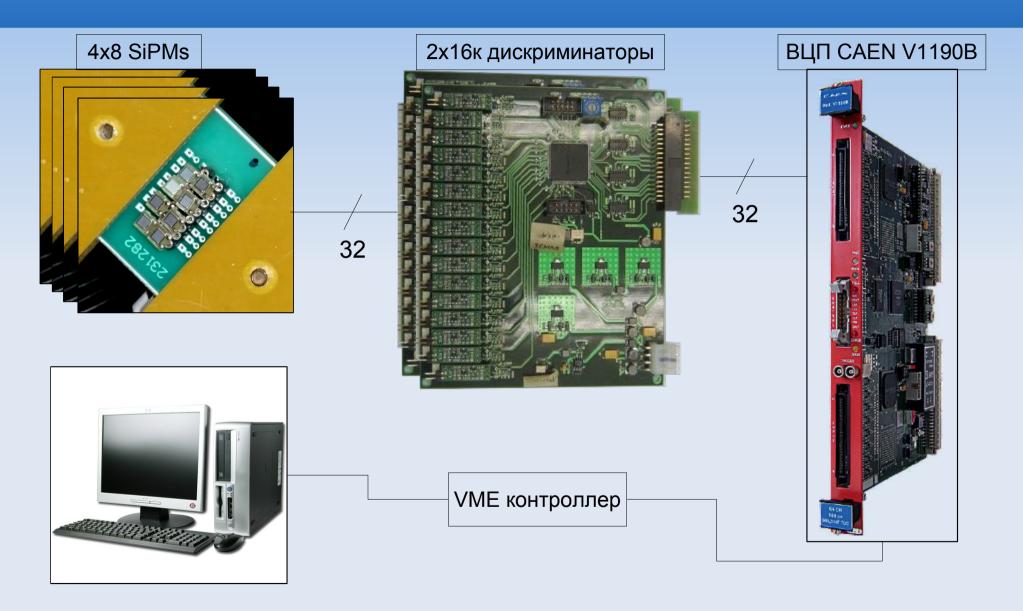
π/К-разделение

μ/π-разделение

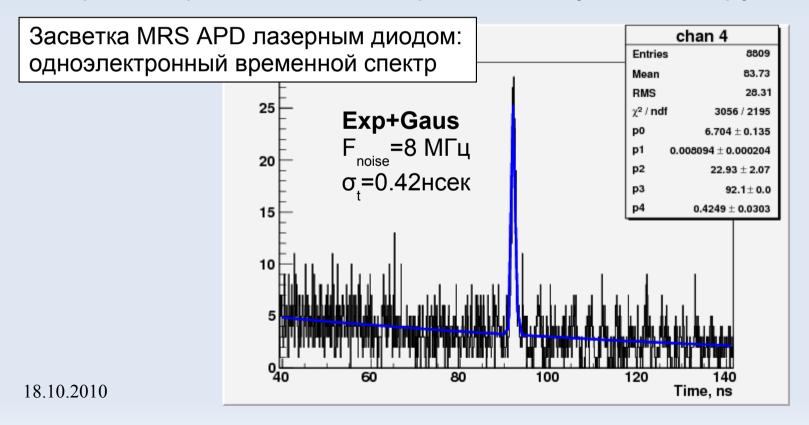



Прототип ФАРИЧ

Имеется

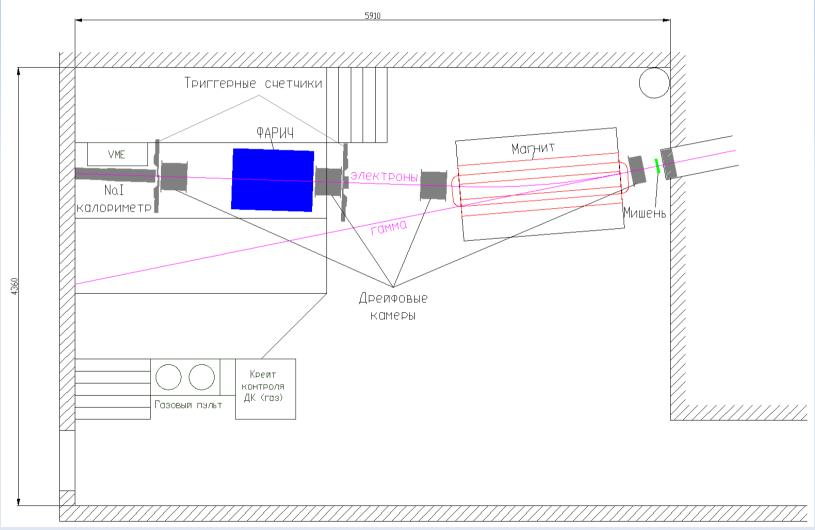

- Бокс (фокусное расстояние 50–700 мм)
- Фотонные детекторы: 32 MRS APD (Г-ЛФД)
- 16-канальные усилители-дискриминаторы (ИЯИ РАН)
- ВЦП CAEN V1190B 64-канальный, многохитовый
- Несколько блоков фокусирующего аэрогеля с базой 200 мм и n_{max}=1.05

Система считывания прототипа



Цель исследования с прототипом

- 1.Получить однофотонное разрешение по скорости и сравнить с моделированием
- 2. Сравнить число фотоэлектронов с ожидаемым
- 3. Установить есть ли коррелированный фон
- 4.Проверить возможность считывания с ВЦП при высокой шумовой загрузке каналов


Статус прототипа

- Bce MRS APD испытаны на шумы и усиление
- Налажено одновременное считывание ВЦП всех 32-х ФД
- Первая калибровка временного разрешения 32-х каналов с помощью пикосекундного лазерного диода: σ₁ = 0.3-1.1 нс
- Переезд прототипа и электроники на пучок планируется на днях

Тестовый пучок на ВЭПП-4М

План дальней комнаты РОКК

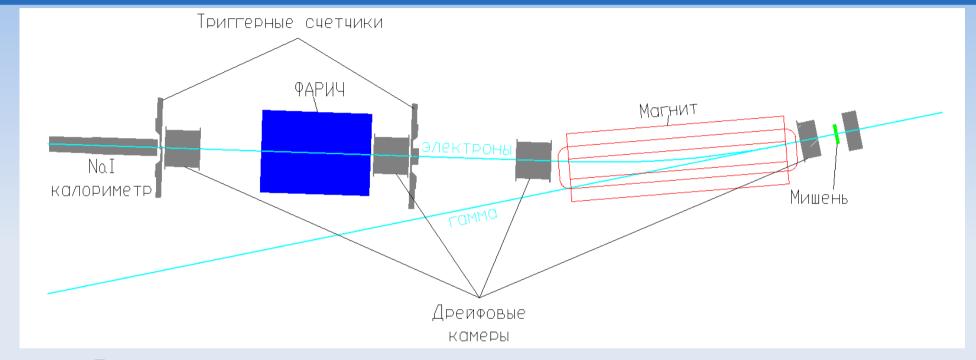
Тестовый пучок на ВЭПП-4М

Двухкоординатная подвижка для прототипа — точность выставки 0.1мм

Триггер и калориметр

Триггерные счетчики 10x10 см²

Nal калориметр $10x10 \text{ cm}^2$, L= $20X_0$

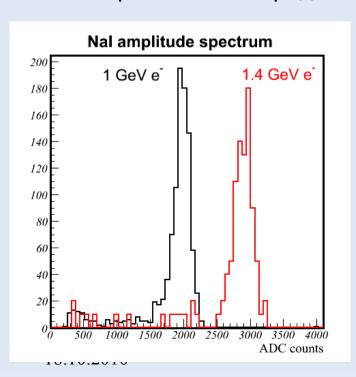


Измерение координаты трека

Однокоординатные дрейфовые камеры: газ Ar:CO₂, Be окно 4x8 см²

Тестовый пучок электронов и меченных гамма-квантов

Расчетные параметры пучка


	Электроны	ү-кванты
Энергия, ГэВ	0.5-3.0	0.05-3.0
ΔΕ/Ε, %	0.3-0.5	≈1
Интенсивность, Гц*	10-100	1000

Установка всех компонентов — октябрь 2010г.

^{*} С конвертером в гало пучка ВЭПП-4М

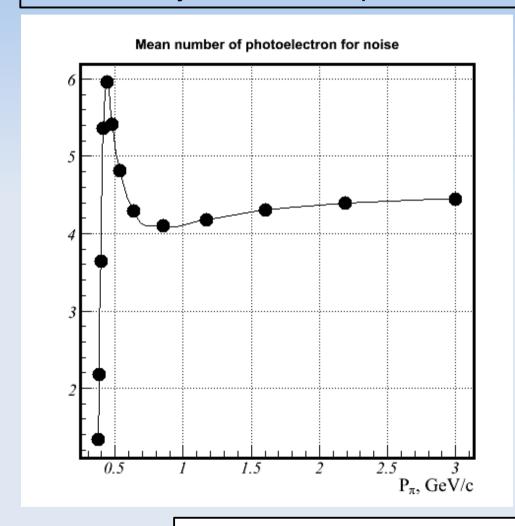
Первые результаты с пучком

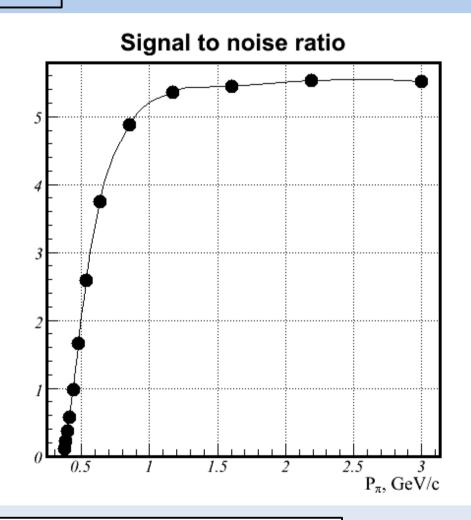
- Несколько заходов с тремя запускающими счетчиками и Nal калориметром в июне этого года
- Работали на гамма-квантах от тормозного излучения электронов на остаточном газе в ВЭПП-4М. Е_д = 2.5 ГэВ, I_д = 3−10 мА
- Свинцовая мишень толщиной 1X₀ для производства е⁺е⁻-пар
- Поле в магните настраивалось на энергию электронов 1 ГэВ и 1.4 ГэВ
- Отбор в 1х1 см² перед Nal калориметром

Загрузка: 0.02 – 0.04 Гц/мА согласуется с ожидаемой

Для увеличения интенсивности в будущем будет использоваться подвижный конвертер в гало пучка или работа на светимости.

Планы на 2011 год


- Испытание прототипа на пучке
 - До февраля в паразитном режиме, далее специальные заходы на ВЭПП-4М
- Производство новых блоков аэрогеля
 - Интеграционный грант СО РАН до 2011 г.
- После получения результатов с тестового пучка — модернизация прототипа до 64+ каналов
 - 64+ малошумящих Г-ЛФД (ЦПТА) ~500+ тыс. руб.


Заключение

- Предложена система идентификации
 ФАРИЧ с возможностью µ/π-разделения до
 1.7 ГэВ/с на уровне ≥3σ
- Прототип ФАРИЧ готовится для испытания на пучке
- Получен электронный пучок
- Первая фаза испытаний прототипа: октябрь 2010г. — февраль 2011г.

Фон от шумов Г-ЛФД (МРРС)

 τ =3нс, Fшум=6 Мгц, ширина кольца ±3 σ

По-видимому необходимо охлаждение МРРС или использование Г-ЛФД с меньшими шумами