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3. C-FACTORY COLLIDER  
 

3.1. Introduction 

 

In the nineties of the past century, several projects of с-factories were discussed in the 

laboratories around the world that were engaged in the high energy physics investigations. All 

these facilities were planned to work with beam energy of 13 GeV and a peak luminosity of 

about 10
33

 cm
-2

 s
-1

 [1, 2, 3, 4, 5, 6, 7, 8]. Different variants of monochromatization of the energy 

of particle collision were considered in order to study narrow resonances as well as the possibil-

ity of the production of transversely polarized particles (for precise energy calibration). The only 

project from the "family" of those с-factories which has been realized is now the BEPC II col-

lider, commissioned at the laboratory IHEP (Beijing) in 2009 [9]. Its planned peak luminosity is 

10
33

 cm
-2

 s
-1

.  

The revival of the interest in these subjects and the beginning of work on the project of 

с-factory at BINP SB RAS is caused, first, by the outstanding results which were achieved at 

the B-factories at the laboratories of KEK (Japan) and SLAC (U.S.). These works culminated in 

the 2008 Nobel Prize in Physics to I. Nambu, M. Kobayashi and T. Maskawa. Though the high 

luminosity of the B-factories allowed obtaining some interesting results at low energies with the 

ISR method (proposed and developed at BINP), creation of a highly productive factory intended 

to study the physics of charmed particles and tau lepton is still a topical issue.  

Second, the growing interest in the creation of the next-generation с-factory resulted 

from the discovery of a new and promising method of beam collision in an electron-positron col-

lider, which allows raising the luminosity by two orders of magnitude at once as compared with 

the existing factories, without a significant increase in the beam intensity or the facility size or 

reduction in the bunch length. The idea was proposed by the Italian physicist Pantaleo Raimondi 

in 2006 when he studied the possibility of creating a high-luminosity B-factory [10]. Later the 

method was justified in joint works by P. Raimondi, M. Zobov (INFN/LNF, Frascati), and D. 

Shatilov (BINP, Novosibirsk) [18, 19] with simulation of the collision effects using the LIFE-

TRAC software developed by Dmitry Shatilov. The new approach, described in detail below, 

was called "Crab-Waist Collision with Large Piwinski Angle". For brevity sake, we will refer to 

the new approach as the Crab Waist or CW collision method. Besides the с-factory in Novosi-

birsk, the CW collision method is used in the projects of the SuperB factory in Italy and the Su-

perKEKB factory (witout the CW sextupoles at the moment) in Japan. In other words, all the 

projects of electron-positron circular super-colliders of the future are based on this new ap-

proach. 

In 2008-2009, the new beam collision method was tried at the Ф-factory DAФNE; the 

experiment results confirm the method to be promising and are in good agreement with the 

theory [13].  

On the basis of the scientific tasks, which are discussed in detail in the section of the 

physics program of the с-factory, the following main requirements to the accelerator complex 

were stipulated: 

 The beam collision energy in the center-of-mass system must vary from 2 GeV to 5 Gev, 

which allows experiments from the nucleon and antinucleon production energy to the re-

gion of the family of -mesons and charmed baryons. Besides, such an energy range will 

allow using the results obtained on the VEPP-2000 and VEPP-4 colliders at BINP. 

 The luminosity of the factory shall be not less than 10
35

 cm
-2

 s
-1

 in the high energy region 

and 10
34

 in the low energy one. 

 The electron beam shall be polarized longitudinally at the interaction point (IP) [14, 15]. 

 Beams shall collide with equal energies; no asymmetry of the energies of the two beams 

is required. 
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 Since no schema for collision monochromatization without a significant decrease in the 

luminosity had been found, it was decided to abandon energy monochromatization, all 

the more so because the high luminosity allows effective exploration of the narrow reso-

nance states without complicated monochromatization solutions. 

 It was decided to abandon the need to have transversely polarized beams for precise 

calibration of energy. The energy will be measured by means of Compton back scattering 

of laser radiation on the particles of the circulating beam. This technique has been im-

plemented recently on VEPP-4M [14] and shown a relative accuracy better than ~10
-4

, 

which seems sufficient for the tasks of the new с-factory. 

 

Among other requirements to the new project, the possibility of using, after modernization to 

increase the positron production, the BINP injection complex under commissioning is worth 

mentioning. To reduce the cost of the facility, its design implies using the existing BINP infra-

structure, tunnels, buildings and premises. It was decided to create the systems, components and 

parts of the complex, relying on the technical and technological solutions available at BINP and 

widely adapting devices (electro-and superconducting magnets, the source of polarized electrons, 

elements of vacuum chamber and beam diagnostics, etc.) developed at BINP and supplied to 

other laboratories or working at the institute. 

 

 

3.2. Crab waist collision method 

 

When two flat beams collide, a small vertical beta function y  at the IP is one of the ma-

jor conditions for high luminosity. However, due to the divergence of the beam, y is limited by 

the longitudinal size of the particle bunch z (so-called hour-glass effect), which can not be 

made very small because of the growth of the collective effects.  The electron bunch length 

achieved by now for characteristic beam currents of 12 А is ~610 mm, which limits the mini-

mum vertical beta function at the IP and consequently the luminosity of the traditional electron-

positron colliders. 

 This problem can be solved with the recently proposed Crab Waist scheme for collision 

of two bunches, which can significantly (up to two orders of magnitude) increase the luminosity 

of е+е- colliders without reducing the bunch length or increasing its intensity [10].The new ap-

proach involves two basic ideas. 

 The first idea is to arrange a collision of two beams at an angle in the horizontal plane   

so that the so-called Piwinski parameter  
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be large enough, where z  is the bunch length and x is its rms size in the transverse direction. 

The schematic of such a collision is shown in Fig. 3.1. 
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Fig.3.1  Beam collision with a large Piwinski parameter 

 

 One can see from Fig. 3.1 that now the vertical betatron function is limited not by the 

bunch length  z  but by the size of the beam interaction region:  2/xy  ; and if the trans-

verse beam size x is small, the vertical betatron function can also be made very small. 

 In the general case, the luminosity and the parameters of the space charge can be written 

as [12] 
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From these formulas we can see that at  =0 we cannot increase the luminosity through reducing 

the vertical beta function (the hour-glass limitations) or increasing the number of particles per 

bunch N (restrictions on the collision parameter y ~ 0.1). If >> 1, first, the region of beam in-

teraction (and thus y) may become very small (fractions of millimeter), and the reduction in the 

beam size is compensated with a large  so that the y value remains in the required limits. 

Moreover, the horizontal parameter of the space charge x , decreases as -1
, which is also a posi-

tive factor.  

 Note that luminosity expression (3.2) looks the same as for a head-on collision of beams, 

and the dependence on the intersection angle enters only the parameters of the space charge. Fig. 

3.2 depicts beam collision at a small Piwinski angle and a large one. 

 

     
Fig. 3.2  Beams colliding with a small (left) and large Piwinski parameter. For the sake of clarity 

the transverse scale was increased much as compared with the longitudinal one. 

  



 80 

 At a CW collision, the increase in the Piwinski parameter occurs due to the increase in 

the angle of intersection and the reduction in the transverse beam size. Therefore, it is clear that 

for this approach, unlike the traditional facilities for colliding beams, the horizontal emittance 

must be small, which allows applying the well-developed methods of designing low-emittance 

synchrotron radiation sources. 

 Let us estimate the characteristics of a collider with energy E = 2 GeV and a circumfer-

ence of about 800 m, which is determined by the convenience of the setup accommodation in the 

BINP area. Let the beam intersect at the angle 2 = 60 mrad, then a luminosity of 10
35

 cm
-2

s
-1

 

requires parameters as listed in Table 3.1 

 

 

Table 3.1 Beam parameters 

Beam current, I A  1.7 

Number of particles in the beam, N  2.7×10
13

 

Number of bunches, nB   390  

Bunch current, Ib  mA  4.4  

Bunch length, ζz  mm  10 

Emittance, εx/εy nm-rad  8 / 0.04  

β at the IP, βx
*
/ βy

* 
mm  40/0.8 

Beam size at the IP, ζx/ζy µm  17.9/0.179  

Piwinski parameter, Φ   15.1  

Space charge parameter, ξx/ξy  0.0044/0.13  

Luminosity, L  cm
−2

s
−1

 1.0×10
35

 

 

 It should be mentioned that none of the parameters listed in the table limits (in the techni-

cal sense) the creation of the facility. Such (and even higher) currents were obtained at the B-

factories (KEK and SLAC) and the F-factory (Frascati); such emittances have long been com-

mon for the modern synchrotron radiation sources, and a bunch length of ~ 6 ÷ 10 mm has been 

achieved at both colliding beam facilities and SR sources.  

 Various authors have long considered the problem of beam collision at an angle and 

shown (e.g. [17, 18]) that in such a scheme modulation of the vertical motion by horizontal beta-

tron oscillations leads to a large (as compared with a frontal collision) number of coupled reso-

nances which impede the realization of the above advantages. To solve this problem and correct 

the betatron coupling, the Crab Waist transformation of beam at the IP (Fig. 3.3) was suggested. 

 
Fig. 3.3  Schematic arrangement of the CW sextupole magnets 

 

For this purpose, two sextupole magnets are placed from two sides of the IP. The transformation 

of the vertical coordinate and the pulse through the first (along the beam) "thin" sextupole mag-

net with the integrated strength )(ml  

 

0yy  ,            000 )( yxmlyy   
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can be formally considered as vertical focusing of the beam with the focal length depending on 

the horizontal coordinate: 

 

000 )( ylxKyy  ,    где    00 )( xmxK  . 

 

Then the position of the minimum of the vertical betatron function varies depending on the hori-

zontal coordinate of the particle. In other words, the minimum of the vertical betatron function 

(waist) rotates as in Fig.3.4. 

  

    
   

Fig. 3.4.  Position of the minimum of the vertical betatron function before (left) and after (right) 

the CW transformation. 

 

 At a certain betatron phase advance between the CW sextupoles and the IP (   nx , 

2/)12(   my , where n and m are integers) and a certain integral strength of the lens 
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where *
 and  denote the beta-function at the IP and in the azimuth of the “crab” sextupole, cor-

respondingly, the minimum of the vertical betatron function rotates so that the dependence of the 

vertical betatron phase at the IP on the horizontal coordinate of the test particle gets suppressed, 

which efficiently kills both the betatron coupling resonances and their synchrobetatron satellites. 

 Fig.3.5 shows a luminosity scan in dependence on the position of the nonperturbed beta-

tron tune for the case when the “crab” transformation is off (right) or on (left). One can see that 

in the latter case many coupling resonances are killed and the “good” luminosity region is much 

bigger. 

The Crab Waist concept of collision was experimentally verified at the Ф-factory 

DANE in Italy [13]. Through relatively small modifications, the beams were made to collide at 

a large Piwinski angle, and sextupole magnets were placed around the IP to provide the CW 

map. However, it was impossible to obtain a small vertical betatron function, because of the in-

sufficient flexibility of the ring lattice. Nevertheless, the suppression of the collision effects due 

to the “crabbing” of the vertical beta waist alone increased the luminosity ~ 3 times as compared 

with the best results of the previous collider configuration (the green dots in Fig. 3.6 should be 

compared with the yellow and red ones). Turning the "crab" sextupoles off (the blue dots in the 

graph in Fig. 3.6) decreased the luminosity and made it impossible to work with large currents, 

because of the collision effects. The experiment clearly demonstrated the validity and potential 

of the Crab Waist collision concept. 
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Fig. 3.5  Luminosity as a function of the working point of the betatron tunes (the horizontal and 

vertical axes correspond to the tune fractional part part). The red and blue colors show large and 

small luminosity. 

 

 
Fig. 3.6  Measured DANE luminosity in peak in dependence on the colliding beam intensity. 

The red and yellow points indicate the best results in the previous configuration (without CW 

optics); the green and blue points are for the CW sextupoles on and off, correspondingly.  

 

3.3. Collider parameters definition 

 

There is one collision point in the collider, where, depending on the experimental pro-

gram, one or two disposable detectors can be placed:  
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(1) An universal detector will operate throughout the energy range. The main luminosity integral 

will be gained at fixed points of 1.5 GeV (J/ψ-meson) to 2.5 GeV (charmed baryons) in the 

beam. At every such point, the collider collects statistics duirng a long time, and the luminosity 

must be maximum possible. The largest integral is estimated to be gained at the ψ(3770) point. 

Besides that, a few scannings over energy from 1 GeV to 2.5 GeV will be carried out. 

 

(2) A detector with a dense polarized target. The high luminosity at the nucleon production thre-

shold and the longitudinal polarization of electron beam make the сη-factory the only possible 

source of polarized antinucleons. The experiment consists in the examination of the spin-

dependent characteristics in the process of annihilation of nucleons and antinucleons. For this, 

the polarized target should to be placed as close to the place of particle production as possible. 

Unlike the universal detector, this architecture looks more compact and simple, including the 

simplification of the superconducting winding that forms the longitudinal field in the detector, 

which can be used to increase the luminosity at the expense of another final doublet with large 

aperture and another angle of beam collision.  

 

So, the efficiency of the facility operation should be optimized for energies of 1.5 GeV to 

2.5 GeV, the maximum efficiency (as to the luminosity, life time, operation time, etc.) reached at 

energy of 1.88 GeV, where a suppressing luminosity integral gain is predicted. This task is 

solved subject to the following considerations: 

 

 High single-bunch luminosity, which is reached due to the application of the Crab Waist 

conception and the sub-millimeter vertical beta-function at the IP.  

 The multi-bunch mode, which implies the application of the two-ring scheme. 

 A high bunch charge at a small length (~10 mm). 

 Efficient control of the damping parameters (emittance, damping time, etc.) to provide 

high luminosity over the entire energy range. 

 The final focus that ensures obtaining an ultimately small beta-function at the beam IP; 

placement of the “crab” sextupoles; correction of the high chromaticity of the lenses of 

the final focus; etc. 

 Provision of high-level longitudinal polarization of electron beam over the entire energy 

range. 

 Continuous injection at the experimental energy with the positron current intensity pro-

viding achievement of high luminosity. 

 

Luminosity. High luminosity in the single-bunch mode is achieved due to the Crab Waist 

scheme. The beam collision at a large Piwinski angle makes the interaction region significantly 

smaller than that at a frontal collision, when this region is equal to the length of the bunch. Thus, 

with no fear of the hour-glass effect, we can reduce the vertical beta function at the IP. Another 

positive moment also worth noting is that there is no problem of parasitic IPs in the scheme with 

a large Piwinski angle as the beams are moved several transverse dimensions apart already at the 

distance of the bunch length. 

The ultimate value of the collision parameter ξy when the CW technology is applied is 2 

to 3 times higher than at a head-on collision of beams. This is achieved due to the two “crab” 

sextupoles placed near the IP so that they do not perturb motion over the entire ring and rotate 

the vertical size at the IP in dependence on the transversal coordinate. Thus, the phase modula-

tion induced by the beam-beam effects is suppressed as well as the betatron and synchrobetatron 

coupling resonances.  

The maximum ξy value depends on the time of betatron oscillation damping in the storage 

ring, τx. Analysis of the parameters of electron-positron colliders shows that the ξy parameter is 

inversely proportional to the cube root of the damping time. Simulation of the beam-beam (BB) 
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effects suggests that for ξy ≈ 0.15 the damping time should be ~ 30 ms. To maintain a high ξy 

value throughout the energy range it is necessary to keep the damping time constant. 

On the one hand, when the energy decreases, the luminosity will decrease proportionally 

to the energy itself. On the other hand, the influence of the BB effects will increase, which is ex-

pressed as the dependence of the ξy parameter on the energy. Exceeding the maximum ξy value 

leads to a decrease in the lifetime of the beam. Accordingly, to maintain a high luminosity it is 

necessary to compensate the energy change with other values entering ξy. The angle of beam in-

tersection as well as the horizontal and vertical beta functions at the IP depends on the design of 

the final focus. So, it would be better to keep these values constant as the energy varies. It is pro-

posed to optimize the luminosity via changing the bunch length: when the energy decreases, the 

bunch length increases, the maximum ξy value remains constant, while the luminosity decreases 

linearly. Increasing the bunch length is useful for reducing the role of collective effects and intra-

bunch scattering. 

 

The final focus design. Compact superconducting two-aperture magnets are planned to be used 

as the final doublet of quadrupole lenses. The distance from the IP to the cut of the yoke of the 

first (defocusing) quad is 60 cm and the gradient is 10.7 kG/cm. The application of two-aperture 

magnets allows passing beams along the magnet axis, reducing the unwanted background load of 

the detector from the synchrotron radiation. An additional complication of the final focus system 

is associated with the need to compensate the longitudinal field of the detector, which leads to 

the transversal rotation of the beams and introduces the betatron coupling. 

  

 Damping time and beam emittance. The phase-space volume and the damping time should 

remain constant throughout the energy range. 


  231 I

ECxx  ,        (3.4) 

where С = 2113.1 m
2
/GeV

3
/s,  П is the storage ring circumference, I2 is the second radiation 

integral (it is taken that the dimensionless damping decrement Jx = 1), which includes the contri-

bution from the magnetic structure of the ring, I20, and the wigglers, i2: 
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where hw = Bw/BR, Bw is the maximum field in the wiggler, BR  is the magnetic rigidity, Lw = λw 

Nw is the total length of the wiggler, λw is the field period, Nw is the number of periods. In order 

to keep the damping time constant throughout the energy range, there are superconducting wig-

glers mounted in the magnetic structure of the storage ring, which allows efficiently tuning the 

integral I2.  

Note that the energy loss by radiation per turn is unambiguously associated with the 

damping time: 

x

CU

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 2

0 . 

 

A decrease in the damping time will lead to an increase in the power of the energy loss by 

radiation, which should be compensated by the accelerating RF system: 

 

IUP 0 , 

 

where I is the total beam current. 

 Besides, the superconductive snakes allow monitoring the horizontal phase-space volume 

( 50I  and 5i  denote the contribution from the storage ring and the snakes, correspondingly): 



 85 

2

5

2

I

I

J
C

x

qx


  ,         5505 iII  ,          















22

2

0

2

25

35

20

15

1

wwx

xwww
h

Lhi






, (3.6) 

where x  is the horizontal beta function value averaged over the snake length; η0 is the 

dispersion function at the center of the snake. The last expressions have been obtained for the 

sinusoidal model of snake. It is desirable to install the superconducting snakes in places with low 

beta function in order to minimize their influence on the beam. 

 

Number of particles and bunch length. The maximum number of particles per bunch is 

determined by the fast head-tail instability. The threshold current of this effect is proportional to 

the bunch length and should be taken into account when choosing the latter. A large bunch 

charge distorts the potential well of the accelerating RF field and increases the bunch length. In 

addition, the microwave instability may lead to increase in the energy spread of the beam as well 

as in the bunch length. This effect has a threshold nature and it is efficient to work at beam 

current values below the threshold. Nevertheless, it is necessary to have a reserve in the 

accelerating voltage because the only way to overcome the bunch stretching due to the current is 

to reduce the bunch length at the zero current. The beam current and bunch length values for the 

cη-factory are selected basing on the experience with the values already achieved at the present 

B-factories. 

 

The number of bunches. The number of bunches (total current) depends on the power of the 

high-cost accelerating RF system. The number of bunches determines the system for suppression 

of multi-bunch instabilities. Suppressing the multi-turn ion instability in the electron ring re-

quires a 5-10% gap in the bunch repetition. Fast ion instability may lead to increase in the verti-

cal dimension of bunches at the end of the train. A vertical size increase can also occur in the 

positron ring as a result of the interaction with the electron clouds that are formed from the sec-

ondary particles near the beam axis. The point of the instability is proportional to the beam cur-

rent and inversely proportional to the inter-bunch distance. 

 

Loss of particles. Two effects leading to loss of particles dominate at the сη-factory: the 

intrabeam scattering (Touschek effect) and the single bremsstrahlung, the latter being almost 

independent of the particle energy and determined by the single-bunch luminosity, which will 

fall with decreasing energy. Correspondingly, the loss due to the single bremsstrahlung will also 

fall. On the other hand, the Touschek loss will increase with decreasing beam energy. However, 

this dependence is not very strong, because the total phase-space volume increases with 

decreasing energy: the transverse emittance is preserved and the beam length increases. 

 

Injection. To ensure a high integrated luminosity it is necessary to maintain an appropriate 

average current, for which the “continuous” injection mode is suggested. The choice of the 

injection frequency is determined by the efficiency of data recording (the ratio between the 

detector dead time and the background loading). The maximum frequency is determined by the 

repetition rate of the positron injection complex and equals 50 Hz. To reduce the dead time of 

the detector we suggest simultaneous injection of electrons and positrons, which requires their 

simultaneous acceleration in the linear accelerator with a shift of λ/2. Such a method has been 

implemented at KEKB. 

 

Polarization. The longitudinal polarization of electron beam at the IP is one of the key issues of 

the cη-factory. For this purpose a source of polarized electrons is allowed for in the design, at the 

exit from which one can get any spin direction and thus with all future rotations at the point of 

injection, the beam will have a correct spin direction. Two alternatives for obtaining the longitu-

dinal polarization at the IP of the base ring were considered: (1) a scheme with polarization re-

covery, and (2) a scheme using the "Siberian snakes". In the first case, two spin rotators are used, 
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which are located near the IP and perform spin rotation in a small region, the spin motion staying 

unperturbed over the rest of the ring. In this case, the spin rotators occupy a relatively small 

space and the integral of the longitudinal field is small, which is a positive moment in terms of 

the betatron coupling. A significant drawback of this scheme is the presence of (three) spin reso-

nances in the working energy range, one of which falls on the point of τ-lepton production, and 

the other, on the Λ-baryon region. That is why the second scheme was chosen. However, to ob-

tain a high degree of polarization throughout the energy range, there must be five or more Sibe-

rian snakes. To reduce the spin-orbit coupling the Siberian snakes must alternate with supercon-

ducting damping snakes. In this regard, the parameters under which the design luminosity is cal-

culated are chosen for a relatively large (by modern standards) betatron coupling of 0.5%. 

 

General arrangement of the setup. Subject to the above, the cη-factory consists of the follow-

ing facilities 

 

 Injector of positrons 

 Polarized electrons injector 

 Full-energy linear pre-accelerator 

 Double-ring collider 

 

Two independent (electron and positron) injectors can effectively produce particles 

without losing time for changing the polarity of the magnets and implement a scheme of 

simultaneous acceleration of two bunches. The linear accelerator (unlike the synchrotron) allows 

accelerating the polarized particles without losing the degree of polarization as well as 

accelerating large charges of particles with smaller loss and higher frequency. 

 

The main ring of the cη-factory is a racetrack storage ring consisting of arcs, the technical 

straight section for injection and the experimental section (shown schematically in Fig. 3.7). 

 

 
 

Fig. 3.7  Schematic of the complex 

 

The arcs comprise four Siberian snakes alternating with four superconducting wigglers. 

The parameters of the arcs were chosen so as to obtain the required dimensions and the radiation 

parameters of the beam. The dipole magnet is selected subject to the requirement to the damping 

time. The optics of the periodicity elements must ensure the expected beam emittance. At 2.5 

GeV the damping time should be 30 ms and the beam emittance should be 8 nm·rad with the 
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wigglers turned off. The technical straight section accommodates the accelerating RF system, the 

fifth Siberian snake, and the injection equipment. In the midpoint of the technical straight section 

a vertical separation of the beams is arranged.  

The experimental straight section is intended to focus the beams at the IP. The first 

quadrupole doublet is placed inside the detector. The lenses are to be superconducting and placed 

in one cryostat. The next lens system is designed to match the optical functions of the final 

doublet with the rest of the structure and correct the chromatic and geometric aberrations. The 

experimental straight section also comprises a system of collimators to reduce the halo of lost 

particles and improve the background situation for the detector. Since the energy loss per turn is 

rather large, it would be reasonable to place the energy calibration system near the IP, in one of 

the drifts. 

The main parameters of the collider are presented in Table 3.2 

 

Table 3.2 Main parameters of the ctau-factory 

Energy 1.0 1.5 2.0 2.5 GeV 

Circumfernce, П 766.6 M 

Revolution frequency, f0 391.06 kHz 

Revolution time,η0 2.557 μs 

Orbit compaction factor, α 8.949 9.053 9.078 9.087 10
-4 

Wiggler field, Bw 49.23 36.80 25.07 0 Kg 

Accelerating voltage, VRF 310 900 990 1000 kV 

Energy loss per turn, U0 170 256 343 434 keV 

Damping time, ηx  / ηz  / ηs 30/30/15 ms 

Coupling factor, k 0.5 % 

Horizontal emittance, εx 8 nm·rad 

Vertical emittance, εy 40 πm·rad 

Energy spread, ζE 1.009 9.953 8.435 7.378 10
-4

 

Bunch length, ζz 1.6 1.06 1 1 cm 

Particles per bunch, N0 7·10
10 

 

Bunch current, I0 4.4 mA 

Number of bunches, Nb 390  

Total number of particles, N 2.73·10
13

  

Total current, I 1.7 A 

Beta functions at the IP, βx / βy 4/0.08 cm 

Beam size at the IP, σx / σy 17.9/0.18 μm 

Intersection angle, 2θ 60 mrad 

Piwinski angle, θ 26.91 18.50 16.82 16.82  

Hour-glass effect 0.906 0.906 0.906 0.906  

Collision parameter, ξy 0.15 0.15 0.12 0.095  

Single-bunch luminosity, L0 1.61 2.43 2.57 2.57 10
32

 cm
-2

s
-1 

Светимость, Luminosity L 0.63 0.95 1.00 1.00 10
35

 cm
-2

s
-1 

 

3.4. Magnetic lattice 

 

3.4.1. General description of the collider 

 

The magnetic lattice of the сη-factory is designed subject to the following main points: 

 

 Provision of small beam emittance throughout the energy range (x = 8 nm-rad, y = 0.04 

nm-rad). 
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 Ensuring high productivity of the collider at  Е = 1.0 – 2.5 GeV 

 Optimization of the setup parameters is carried out in the region of the largest luminosity 

integral Е ≈ 1.9 GeV; the maximum luminosity at this energy must be 10
35

 cm
-2

s
-1

 or 

more. 

 The magnetic lattice shall allow placing the “crab” sextupoles in the azimuth with the re-

quired betatron phase advance.  

 Ensuring high-degree longitudinal polarization of electron beam at the IP over the whole 

energy range. 

 

To realize these conditions it is proposed to create the collider on the basis of two rings 

separated in the radial direction and having one main IP in the experimental section and a "para-

sitic" IP in the straight technical section (Fig. 3.8). The beams intersect in the radial direction in 

the technical section and are moved apart in the vertical direction by magnets that create a local 

orbit bump. This scheme of the rings allows accumulating sequences of large numbers of 

bunches and providing a total intersection angle of 60 mrad, which is required for the CW colli-

sion. For a luminosity of 10
35

 cm
-2

 s
-1

 the ring should accommodate 390 bunches with a total cur-

rent of 1.7 A and a 10% gap in this sequence to prevent accumulation of ions in the electron 

beam potential. The facility perimeter required to accommodate the given number of bunches is 

about 767 m. 

To obtain acceptable polarization throughout the energy range of the electron beam it is 

necessary to place five polarization insertiobs with superconducting solenoids in the ring with a 

bending angle between the devices of about 72º.  

The implementation of the CW scheme with an angle of beam intersection at the main IP 

of 60 mrad imposes requirements on the beam emittance (x = 8 nm-rad, y = 0.04 nm-rad), 

which should not change throughout the energy range. Simulating the BB effects shows that x = 

0.54 and y = 0.57 is the optimal choice for the operating point of the betatron tunes.  The 

required damping time of transverse oscillations should not exceed 30 ms, and that of the 

longitudinal oscillations, 15 ms. To control the emittance and provide the necessary radiation 

damping, two inserts with superconducting damping wigglers are placed in each arcs of the 

collider. The systems of magnets and quadrupoles adjacent to the segment of the damping 

wigglers excite a dispersion function to correct the beam emittance. 

The rings of the collider also contain matching sections to adjust the periodicity cells of 

the half-rings with the experimental section and the technical staright. The technical straight 

comprises the segment for moving the colliding beams apart. 

A schematic view of the collider of the cη-factory is shown in Fig. 3.8. The collider lattice 

consists of two identical storage rings of the same circumference, which are spaced from each 

other in the horizontal plane. The rings are symmetrical with respect to the axis passing through 

the main and parasitic IPs. We can distinguish several functional sections in the electron and 

positron storage rings, denoted in Fig. 3.8 with the following numbers: 

 

1. The IP, the detector and the superconducting lenses of the final focus that ensures the 

desired focusing of the beams at the IP. The building for assembling, maintaining and placing the 

detector systems is located over this site. The IP is in immediate adjacency to the two long (70 

m) collision segments, where the chromaticity correction sections and the "crab" sextupole 

lenses are located. 

2.  The technical section is intended to accommodate the injection system, the accelerating 

cavities and the beam separation drift. The building which will house the power supply system of 

the magnets, the RF generators, the control equipment, the power supplies for the vacuum 

pumps, the control room and other premises necessary for the functioning of the complex is 

planned to be built over the technical gap. 

3. The big and small half-rings, consisting of the same elements but slightly differing in the 

length of the periodicity cell. 
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4. The spin rotators located uniformly over the angle of beam rotation in every 72
о
 and creating 

a longitudinally polarized electron beam at the IP with polarization sufficient for the 

experiments. 

5. Four sections of the damping wigglers that ensure the required radiation parameters and con-

trol the emittance. 

6. Four sections for matching the periodicity cells of the small and large half-rings with the expe-

rimental and technical sections; these sections also include the sections for zeroing the dispersion 

function. 

 

 
 

Fig. 3.8  Scheme of the collider of the сτ-factory. See the designations and explanations of the 

main components of the complex in the text.  

 

 

3.4.2. Interaction region 

 

The interaction region (IR) shall  

 

 ensure low beta function values at the IP, 

 provide small geometrical aberrations, 

 have a length and an orbit bend angle that agree with the infrastructure (tunnel) being de-

signed, 

 ensure local correction of the chromaticity. 

 



 90 

Main parameters used to optimize the interaction region (IR) are given in Table 3.3. 

 

 

 

Table 3.3 Main parameters of the collision segment of the C-tau-factory 

Energy, GeV 2 

Particles per bunch 7 · 10
10 

Number of bunches 390 

Beam current, А 1.7 

βx, mm 40 

βy, mm 0.8 

εx, nm rad 8 

Coupling factor, εy/εx, % 0.5 

Bunch length, ζs, mm 9 

Total intersection angle, mrad 60 

Collision parameter, ξy 0.12 

Geometrical luminosity, cm
-2

s
-1 

1.1 · 10
35 

Luminosity subject to the bunch length, cm
-2

s
-1

 1.0 · 10
35 

Piwinski angle, , rad 15 

 

Obtaining small beta function values at the IP requires placing the final lenses as close to 

the IP as possible. The solenoids that compensate the longitudinal field of the detector are si-

tuated before the lenses. Since the winding of the main solenoid of the detector envelopes the 

final lens doublet, the lenses are enclosed in a shield solenoid, in order to use uncoupled optics in 

the lenses.  

 

 
Fig. 3.9  Scheme of the collision region. The beam trajectories and envelopes, the compensating, 

shield and main solenoids and the 10º, 15º and 20º cones are shown.  

 

The scheme in Fig.3.9 shows the location of the main elements in the collision region and 

the beam trajectories. The distance from the IP to the edge of the nearest lens is 60 cm; the place 

for the compensating solenoid less than 20 cm long is 40 cm away from the IP. The final focus 

lenses are 20 cm long. One lens is located 30 cm away from the other. This distance was 
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optimized in view of obtaining the maximum acceptance and minimizing the beta functions in 

the lens. The final lens is made with two apertures for the incoming and outgoing beams to pass 

through the center of their apertures and avoid subjecting to the dipole field, which generates 

synchrotron radiation and creates a substantial background load on the detector. The chosen 

intersection angle allows creating a two-aperture lens and getting the required luminosity. 

Small beta function values at the IP lead to large values in the final lenses, so non-

interleaved pairs of sextupoles separated by the -I transformation within each pair are used to 

compensate the chromaticity. To facilitate the compensation of the chromatic effects, the optics 

of the collision segment is based on telescopic transformations for the main parts of the collision 

segment [19]. 

The optical functions of the collision segment are shown in Fig. 3.10. 

 

 
Fig. 3.10  Lattice functions of the collision segment. Top: the schematic diagram of the segment: 

FFT is the final telescope, YCCS and XCCS are the chromaticity correction sections, CRAB is 

the section of the “crab” sextupoles, ЕТ is the section for zeroing the horizontal dispersion 

function, MS is the section for matching the IR with the arcs. 

 

The first (final) telescope consists of two doublets of quadrupole lenses. The telescope 

parameters have been chosen to meet the following conditions: the beta functions at the exit shall 

be matched with the chromaticity correction sections; if the beta function chromaticity equals 

zero at the IP, it must be maximal at the exit from the final telescope. 

Further goes the chromaticity correction section, which adjusts the horizontal and vertical 

chromaticity of the collision region. It begins with a dipole to excite dispersion for the chromatic 

sextupoles and a doublet of lenses to provide the required phase advance and beta functions. The 

chromaticity of the beta functions is mainly excited by the doublet of the final lenses. There 

should be sextupoles with a difference of nπ in the corresponding betatron phase to correct this 

chromaticity. It is location of the second sextupoles that corrects the second-order geometric ab-

errations, so a minus identity transformation is observed within the pair. The third-order geomet-

ric aberrations that arise due to the finite length of the sextupoles are compensated by the correc-

tion sextupoles with a strength of about 10% of that of the main sextupole, which are placed (at a 

small distance) after each main sextupole. The section ends with four lenses and one dipole, thus 
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providing zero dispersion and telescopic transformation. Further goes the section of the crab sex-

tupole intended to provide the phase advance required to install the crab sextupole and the beta 

function values required for the sextupole strength to be reasonable and to minimize the nonlin-

ear dispersion and the chromaticity of the beta functions in the place of the crab sextupole. This 

section ends with four lenses providing the telescopic transformation from the IP to the end of 

the collision segment. 

The strengths of the main sextupoles are chosen allowing for the condition of chromatic 

transparency of the whole IR. That is, if there are zero chromaticities of the beta and alpha func-

tions of nonlinear dispersion at the entrance to the section, at the exit they must by zero too. In 

this case, the main sextupoles are not enough, so one more sextupole (not breaking the -I pair) is 

installed, with a strength less than 30% of that of the main sextupoles. To reduce the strength of 

these additional sextupoles, the section for horizontal chromaticity correction is shifted in phase 

relative to the corresponding final lens [20]. The IR is asymmetric with respect to the IP. Be-

cause of the angle between the beams the orbits diverge, which is adjusted via matching the sec-

tions between the collision segment and the half-rings of the cτ-factory. 

 

3.4.3. Magnetic lattice of the storage ring 

 

The optical functions of the collider are shown in Fig.3.11. Since the beta functions are 

small at the point of beam collision, the betatron functions reach values of about kilometer (and 

more) in the final focus lenses. 

 

 
Fig. 3.11  Optical functions of the cη –factory. 

 

As a result, the final focus quadrupoles are a strong source of chromaticity (both of the betatron 

tunes and of the optical functions), the high chromaticity orders playing a significant role. Thus 

the influence of the field errors and the nonlinearities, including the edge ones, of the lenses of 

the final focus increases as well as the requirements to the manufacturing accuracy of such 

lenses. 
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Fig. 3.12  Periodicity cells of the arcs and the technical straight section.  

 

Fig. 3.13 shows the cells for matching the straight (experimental and technical) sections 

with the arcs. These regions are intended to match the betatron functions of the sections and the 

arcs and make the dispersion function zero in the sections.  

 

 
(a)       (b) 

 
(c)       (d) 

Fig. 3.13  Matching regions for the technical, (a) and (b), and experimental, (c) and (d), sections. 

The left and right rows show the matching with the small and large arcs, correspondingly. 

 

The optical functions of the collision region are shown in Fig. 3.10. It is also necessary to 

note the presence of large (several hundred meters) beta functions in the chromaticity correction 

sections, which requires careful attention to the quality of the field of the magnetic elements. 

The two arcs of each (electron and positron) storage ring are slightly different in size, for 

arrangement of the beam intersection. However, the periodicity cells of the small and large half-

rings, which are intended to solve the problem of obtaining a small emittance, hardly differ from 

each other in the behavior of the optical functions, which are shown in Fig. 3.12. The cell is a 
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modified FODO lattice in which the short bending magnets are shifted to the defocusing lens 

(shown at the center of the cell in Fig. 3.12). Such a cell is still compact, but it allows a fairly 

low emittance due to the fact that both the horizontal beta function and the dispersion function in 

the magnet are close to the minimum. The periodicity cell of the technical gap, also shown in 

Fig. 3.12, is a simple FODO structure; the dispersion function is made zero here by a special 

matching segment (see below). 

The magnetic structure of the storage ring includes 128 dipole magnets, 216 quadrupole 

and 204 sextupole lenses, 16 wigglers to control the polarization and 12 wigglers to control the 

damping parameters.  

 
 

3.4.4. Controlling the emittance and the damping parameters 

 

To obtain the maximum luminosity of the cη-factory in the required energy range it is 

necessary to effectively control the radiation damping parameters of the accelerator in order to 

maintain a constant horizontal emittance ( 8x  nm-rad) (nm-rad) and the damping time (x,y  

30 ms, z  15 ms). Superconducting wigglers are planned to be installed for this purpose on both 

rings. The wigglers parameters can be estimated from the following considerations. 

The dependence of the damping time on the energy and the wigglers parameters has the 

following form (3.4): 
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where I20 and i2 are the second radiation integral from the accelerator lattice and the wigglers, 

correspondingly. Varying i2 with energy as  
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where 79.0)( 2002  IEI m
-1

 for 5.20 E GeV, it is possible to make the damping time (3.7) a 

constant  function of the energy. 

It follows from (3.8) that the maximum value of the damping integral the wigglers shall 

ensure for the minimum energy 0.1E GeV must be 5.11)(2 Ei m
-1

. The second radiation 

integral from the wiggler field is written as  

22
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
  for a piece-wise approximation of the poles, and  

22
2 w

wL
i


  for a sinusoidal model of the wiggler field, where Lw is the total length of all 

the wiggler and w is the particle turning radius for the maximum field of the wiggler. It can be 

seen that the piecewise-constant approximation gives, for the same length and amplitude of the 

wiggler field, a twofold win in i2. For such an approximation to be valid, the wiggler field period 

should exceed the pole gap by far. On the other hand, the longer the period, the greater the 

deviation of the beam orbit from the axis, and thus the requirements for the value of the 

horizontal aperture of the snake and the quality of the field tighten. Basing on the experience of 

fabrication of superconducting wigglers by BINP, a reasonable compromise is a wiggler with a 

pole gap of  40 mm and a period length of  200 mm. In this case, it is quite possible to use a 

piecewise constant model of the field. 
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Choosing (subject to the free space available) Lw = 6.4 m, we obtain the maximum field 

of the snakes 5.4max wB Т at 0.1E GeV T, which seems quite acceptable for the chosen 

parameters of the wiggler. 

To ensure the constancy of the damping time of the betatron and synchrotron oscillations 

throughout the beam energy range, the wiggler field amplitude should depend on the energy as 

follows: 

 














 1)()(

3

3

020

E

E

L

I
EBEB

w

w  , (3.9) 

 

where )(EB  is the rigidity of the magnetic system. The dependence of the wiggler field on the 

energy at our parameters is shown in Fig.  3.14. 

 

 
Fig. 3.14  Dependence of the radiation integral (left) and the wiggler field amplitude on the beam 

energy. 

 

The dependence of the emittance on the energy and the wiggler parameters is written as  
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Requiring the emittance to be constant at energy and substituting (3.8) into (3.10), we have 
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where 4

5005 108.6)(  IEI m
-1

 for 5.20 E GeV, which together with the second radiation 

integral I20  ensures the horizontal emittance 8x  nm-rad at the maximum energy and the 

wiggler field off.   

It follows from (3.11) that at 0.1E GeV the wiggler shall produce the integral 
2

5 106.6)( Ei m
-1

. For a sinusoidal model, the fifth radiation integral can be written as   
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where x  is the horizontal beta function averaged over the wiggler length, 0  is the «residual» 

dispersion function in the wiggler straight section, and the maximum angle of the beam orbit 

deviation in the wiggler field is computed as  

w

w

w





2
 . (3.13) 

 

To ensure the emittance constancy throughout the energy range, we have to equate (3.12) 

to (3.11) over this range. Since the condition of keeping of the damping time constant unambi-

guously determines the behavior of )(2 Ei , )(Ew   and )(Ew , the only thing we can change in 

(3.12) is the structure function x  or 0 . It is advantageous to fix a rather small 15.0 x  m 

in order to reduce the influence of the wiggler field on the beam dynamics. In this case, one can 

obtain the constancy of the emittance (together with that of the damping time) if the dispersion 

function of the wiggler segment depends on the energy as follows: 
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This expression takes into account that the second term in the brackets is much less than the first 

one: 
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Here 50min0   mm corresponds to energy of 1 GeV, while 105/ wx  m at the same ener-

gy. 

 In the region of high energies, 0EE  , there is practically no need in the wigglers be-

cause the magnetic structure of the storage ring ensures the required emittance and damping. In 

the region of small energies, 0EE  ,  estimate expression (3.12) can be written as 
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taking into account that EEw ~)( , E/1~0 . 

 Fig. 3.15 shows the dependence of the dispersion function on the energy in the wiggler 

segment, calculated in accordance with (3.14). The minimum dispersion value is 50min0   mm 

at energy of 1 GeV, and then it grows up to ~150 mm at energy of 2.5 GeV. 
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Fig. 3.15  “Residual” dispersion function in the wiggler segment (left) and the fifth radiation 

integral produced by the wiggler to preserve the emittance over the operation energy range of the 

с-factory. 

 

For the above-chosen wiggler parameters, the maximum angle of deviation and the orbit 

drift in dependence on the energy are shown in Fig. 3.16. 

 

 
Fig. 3.16  Maximum angle of deviation (left) and orbit drift in the wiggler field. 

   

 

Since in real life a (small) change in the dispersion function in the “wiggler” segment will 

inevitably be accompanied by a change (also small) in the average horizontal beta function 

entering (3.12), the maximum luminosity should be set “in accordance with the effect”. 

 

 

3.4.5. Correction of chromaticity and the dynamical aperture 

 

For the с-factory, the study and optimization of the dynamical aperture have a number of 

features that are more or less identical for all projects of colliders with the Crab Waist collision 

scheme.  

Small values of the betatron functions (especially of the vertical one) at the IP result in 

large chromaticity values (of the tunes and the optical functions) generated by the final focus 

section: 

 
** /  l , 
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where l  is  the distance from the IP to the quadrupole lens, and *  is the corresponding betatron 

function at the IP. For 1* y  mm, the typical vertical chromaticity is 43* 1010~  y . The 

horizontal chromaticity is smaller but it may also be as high as a few hundreds.  

 This chromaticity is corrected locally by the sextupole magnets located, if possible, close 

to the final focus lenses. The strengths of the sextupoles are large and the dynamical aperture 

turns out to be small. To avoid this, we place the magnets in pairs as in Fig.3.17. 

 

 
 

Fig. 3.17  The beam IP, the doublet of the quadrupole lenses of the final focus (FD), and the two 

pairs of the sextupole magnets to correct the vertical (SD) and horizontal (SF) chromaiticity. 
 

If the matrix of the optical transformation between the sextupole magnets of the pair is 

equal to minus unity, such a system does not generate higher-order aberrations outside the pair 

and therefore does not affect the dynamic aperture [19].  

However, this principle is true only for a model with infinitely thin (zero-length) 

sextupole lenses. Allowing for the finite length leads to the fact that only the quadratic 

aberrations are  fully compensated, but the higher ones still stay, and in view of the large values 

of the betatron functions severely limit the dynamic aperture [20] as shown in Fig. 3.18. 

 
 

 
Fig. 3.18  Restriction of the dynamical aperture with pairs of sextupole lenses compensating the 

chromaticity of the collision region subject to their nonzero length. 
 

A method to correct this effect was proposed in [20]. The method consists in adding a 

pair of corrective sextupole lenses also located in phase with the -I transformation to the pair of 

the main chromatic sextupole lenses (Fig. 3.19). Strength of the corrective lenses of 3-10% of the 

basic lenses turns out to be enough to significantly (several times) increase the dynamic aperture 

(Fig. 3.20). 
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Fig. 3.19  Addition of the corrective pair of sextupole lenses (S2) to the main ones (S1). 

 

 
Fig. 3.20  Increasing the dynamical aperture with the corrective sextupole lenses. 

 

Since the condition of placing a pair of a "crab" sextupole lenses is essentially identical to 

a pair of chromaticity-correction lenses placed through the -I transformation and the strengths of 

the "crab" lenses are great, the same effect – reduction in the dynamic aperture if the non-zero 

length of the magnets is taken into account – is observed here too (Fig. 3.21, left). 

 

     
Fig. 3.21  Reducing the dynamic aperture with the “thick” “crab” sextupoles (left) and correction 

of the effect with an additional pair of lenses (right).  

 

Placing an extra pair of compensating lenses of small strength can also essentially 

increase the resulting aperture here (Fig. 3.21, right). 
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 In addition to the effect already considered, which is fundamental for the CW-colliders, it 

is necessary also to ponder the following sources of nonlinear perturbation: 

 

 The boundary fields of the final focus quadrupole lenses and the chromaticity-correction 

cells (since the betatron functions here reach the extreme values of a few hundred me-

ters). 

 The sextupole lenses correcting the chromaticity in the periodicity cells of the half-rings. 

This problem is similar to that which occurs in the modern synchrotron radiation sources 

with low emittance. 

 The extreme smallness of the vertical betatron function at the IP can lead to significant 

kinematic effects, which also must be considered. 

 

3.4.6. Final focus lenses 

 

Fig.3.22 schematically shows the vacuum chamber of the final focus section. The vacuum 

chamber parameters determine the design of the final focus elements and other magnetic 

elements which are located here. The beryllium vacuum chamber of a vertex detector 300 mm 

long from one side (the total length of the chamber is 600 mm) begins from the IP.  The 

following 100 mm are reserved for the detector electronics. In this region the inner diameter and 

the thickness of the vacuum chamber are 40 mm and 1 mm, correspondingly. The angle between 

the beams is 60 mrad here. Then goes a transition gap approximately 150 mm long, where the 

chamber bifurcates into two chambers, each 20 mm in diameter (Figure 3.23). This gap houses a 

superconducting (SC) solenoid compensating the detector field, the solenoid aperture repeating 

the vacuum chamber aperture. 

 

 
Fig. 3.22  Vacuum chamber of the IP (schematic).  

 

Further is the superconducting solenoid which ensures the absence of longitudinal field in 

the FF lens. The solenoid consists of two parts with different apertures (SSH1 and SSH2). The 

aperture of the solenoids is determined by the overall size of the lens and the vacuum chamber at 

the end of the solenoid. The first lens begins inside the shielding solenoid and is almost 

completely shielded from the longitudinal field of the compensating solenoid and the detector 

field. The first FF lens as well as the second one is 200 mm long. There is 300 mm of empty area 

between them. The first shielding solenoid covers the entire lens plus at least 50-100 mm of the 

empty area. This place requires careful and accurate elaboration since it determines the solid 

angle of the detector. The second shielding solenoid begins around the middle of the empty 

space between the FF lenses; the length of the solenoid is determined by the design of the yoke 

of the detector and also requires a detailed study. 
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The parameters of the magnetic elements of the FF section are presented in Table 3.4. 

 

Table 3.4 Parameters of the FF lenses and solenoids at energy of 2.5 GeV 

 

Name Leff (mm) s (mm) 
Bmax (kG), Gmax 

(kG/)  
Rap, mm 

ΔB/B, 

ΔG/G (%) 
Type 

L0 0.595 0 10 40 1 IP 

SС0 100 45 -45 45 1 SC compact solenoid 

SSH1 350-600 55 -10 - 1
 

SC shielding solenoid 

SEQ0 

(NEQ0) 
200 60 -10.7 10 0.01-0.05

 2-aperture SC quadru-

pole lens 

SSH2 700-900 85 -10 - 1 SC shielding solenoid 

SEQ1 

(NEQ1) 
200 110 6.5 22 0.01-0.05 

2-aperture SC quadru-

pole lens 

 

 
Fig. 3.23  Top view (left) and the side view (right). 

 

One of the most important elements in the final focus section are the first (defocusing) 

and second (focusing) quadrupole lenses that provide beam focusing at the IP.   

The yoke of the first lens SEQ0 (NEQ0) is located at a distance of 600 mm from the IP 

(the distance is indicated along the trajectory). The effective length of the lens is 200 mm; the 

overall length with the coils is less than 300 mm. The general view of the lens is shown in Fig. 

3.24. Calculations of the magnetic field (two-dimensional model) show that the accuracy of the 

gradient 4

0 104/  GG  is achieved over the whole range of energy (Table 3.5, Fig. 3.25) in 

the working aperture of the lens R = 10 mm. The field expansion harmonics listed in Table 3.5 

have the following form: 

 

 
n

n

n xAxB 1)( . 

 

The calculations also show that the dependence of the gradient on the energy is, with good 

accuracy, linear, despite the fact that the magnetic field induction in the yoke of the lens reaches 

21-23 kG. The yoke of the lens is made of vanadium permendure with the magnetization curve 

shown in Fig. 3.26. 

 



 102 

       
 

Fig. 3.24  FF lens SEQ0 (NEQ0). The cross section and the flux paths (left) and the general view 

(right). 

 

Table 3.5. Main harmonics of the lens SEQ0 (NEQ0) 

 

 2.5 GeV 2 GeV 1.2 GeV 

n An, (kG/cm
n-1

) An, (kG/cm
n-1

) An, (kg/cm
n-1

) 

2 -10.97 -9.08 -5.32 

6 -0.0038 -0.0031 -0.0019 

10 0.0021 0.0018 0.0011 

14 0.0006 0.00046 0.00027 

18 -2.2E-05 -1.8E-05 -1.1E-05 

 

 

 
Fig. 3.25  Dependence of the gradient of the lens SEQ0 (NEQ0) on the transversal coordinate for 

gradients of 11 kG/cm, 9 kG/cm and 5.3 kG/cm. 
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Fig. 3.26  Magnetization curve of the permendure for the yoke of the FF lens. 

 

The excitation coil of the lens is wound of superconducting NbT wire of a 1.200.75 mm 

rectangular cross section, manufactured by Oxford Instruments. The coil consists of two layers of 

7 turns in each. The minimum bend radius is about 7 mm. The coil is wound in a simple flat 

shape as shown in Fig. 3.27 and then bent into a saddle shape and made monolithic. 

 

     
 

Fig. 3.27  Fabrication of the superconducting coil. 

 

The design of the second (focusing) lens SEQ1 (NEQ1) in the final doublet is similar to 

that of the first lens; the gradient of the first lens is less, but the aperture is larger. Computation 

of the magnetic field shows that it is possible to obtain a gradient differing from the ideal one by 
3

0 10/  GG within the operation aperture R = 22 mm. 

   

3.5. Beam-beam effects and luminosity 

 

For flat (ζy << ζx) electron-positron beams colliding at an arbitrary horizontal angle θ, the 

luminosity and the shifts of the betatron tunes are determined by the following formulas [11, 12]: 
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Here I is the total beam current, Np is the number of particles in the bunch,    is the Piwinski 

angle. Thus, it is clear that increasing the luminosity requires raising the total current and ξy as 

well as reducing the vertical beta function at the IP. In so doing, it is necessary to keep in mind 

that 

 

1) Increasing the total current at the expense of the bunch amount (making the inter-bunch 

distances smaller) may be restricted by the beam interaction effects at parasitic IPs; 

2) Np is restricted by the collision effects (ultimate ξ) and the electromagnetic interaction of 

the beam with the vacuum chamber, which imposes limitations on the minimum bunch 

length;  

3) At attempts to make βy < d, where d is the length of the region of beam interaction (d ≈ ζz 

for small  ), the ultimate ξy and luminosity will decrease due to the hour-glass effect. 

 

All this makes a substantial increase in the luminosity impossible with the traditional 

methods. 

In March 2006, the Italian physicist Pantaleo Raimondi suggested a fundamentally new 

scheme of beam collision [10] known as the Crab Waist scheme. Its main feature is a large Pi-

winski angle (  ≥ 10), obtained by reducing ζx at the IP (small emittance and βx), so that the 

crossing angle θ is still small, about 50 ÷ 60 mrad. In this case, the size of the beam intersection 

region d becomes much smaller than the bunch length: d ≈ ζz /  for   >> 1, which allows an 

abrupt reduction in βy and gives a huge gain in the luminosity for the same total current. Addi-

tional advantages of this scheme are a small space charge parameter ξx and the absence of prob-

lems with parasitic IPs because of moving the beams far apart the in terms of ζx. 

Another fundamental feature relates to the "crab" sextupoles which are located on both 

sides of the IP, in places with a certain betatron phase advance. These sextupoles rotate the verti-

cal "waist" of the beam at the IP, which is reflected in the name of the scheme. This rotation 

gives a small (5 ÷ 10%) gain in the luminosity due to geometrical factor, but their main effect is 

the strong suppression of the betatron and synchro-betatron coupling resonances [21, 22]. The 

ultimate value of the parameter ξy increases 2-3 times! 

This scheme was first tried at the Italian Φ-factory DAΦNE, which increased its luminosi-

ty three times; a good agreement between the experimental data and the numerical simulations 

was achieved [23, 24].  Now the CW scheme is the base of the project of the Italian Super B 

factory [25] and the Japanese Super KEKB factory. 

At large  , the expressions for the shift of the betatron tunes can be rewritten as follows: 
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It can be seen that a simultaneous increase in Np and the bunch length leaves ξy unchanged and 

no problems with the high bunch current arise because its length is also growing. 

On the other hand, it should be remembered that this scheme requires a fairly specific 

magnetic structure of the storage device. For example, there is a problem of obtaining a required 

dynamic aperture (including the energy acceptance), small emittances at high beam currents, etc. 

As a result, the maximum ξy may turn out to be determined not by the collision effects, as is 

usually the case, but by other factors. 
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Fig. 3.28  Luminosity as a function of the betatron tunes for ξy = 0.12. Low and high luminosity 

is shown with the dark blue/black and red colors, correspondingly.  

 

To study the BB effects in the Crab Waist scheme, identify the main factors limiting the 

luminosity, and choose the working point, a numerical simulation was carried out with the 

LIFETRAC code. A simplified model of the ring was used (a linear structure without betatron 

coupling). The rated vertical emittance was obtained at the expense of artificially imposed verti-

cal noise. The results of the simulation – luminosity as a function of unperturbed betatron tunes – 

are shown in Fig. 3.28. In the red region, the luminosity is in the range of (1.0 ÷ 1.1) ∙ 10
35

 cm
-2

 

s
-1

. Of strong resonances limiting the good area we should note the horizontal synchro-betatron 

resonances (mainly the synchrotron satellites of the half-integer resonance), which are shown 

with the vertical blue and black stripes, as well as the low-order coupling resonance of 2νx – νy = 

1, which is shown with the white line. Since the shift of the horizontal tune ξx is very small at a 

large Piwinski angle (the spread of the tunes in the beam being even much smaller [26]), the 

beam-occupied region in the tune diagram («footprint») has the form of a narrow vertical stripe. 

This means that the horizontal synchro-betatron resonances do not restrict the luminosity but 

only the choice of the working point. The luminosity is limited by the resonance of 2νx – νy = 1. 

The upper edge of the footprint (small betatron amplitudes) must remain below this resonance, 

which thus sets limits on ξy for every operating point. Therefore, to obtain the maximum lumi-

nosity it is necessary to move left and down along the dotted line, towards the half-integer reso-

nance. For example, at the point (0.528, 0.550) (marked A in Fig. 3.28), you can easily get ξy= 

0.3, which is 2.5 times greater than the calculated value! In this case, the actual betatron tune 

shift Δνy will of course be less, about 0.19, which corresponds precisely to the distance from the 

resonance. In the simulation, this increase in ξy was achieved by simply raising the bunch cur-

rent. In so doing, the horizontal emittance grew by 20% due to the collision effects; the vertical 

emittance, by 40%, the specific luminosity, 2.35 times and the "tails" of the equilibrium distribu-

tion remained around 10 ζx and 15 ζy.  

On the other hand, the nonlinearities of the magnetic lattice of the storage ring taken into 

account, the spread of the horizontal betatron tunes will be more than just ξx.  

Therefore the choice of a working point cramped between two strong synchro-betatron 

resonances may be nonoptimal. Point B (0.545, 0.570) looks more attractive. Here the ultimate ξy 

 0.24, and the corresponding footprint is shown in Fig.3.28 with the gray strip, which begins at 

this point and bears against the resonance line 2νx – νy = 1. 
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Fig. 3.29 shows the results of simulation for this operating point with different bunch 

currents. It can be seen that the vertical size and the specific luminosity vary only slightly with ξy 

increasing from 0.12 to 0.24, with a sharp jump following. 

Increasing the bunch current in the simulation helps one to understand where the limits 

on the luminosity due to the BB effects are. However, in practice, the maximum bunch current 

will be limited by other factors: the bunch length, the power of the injector, etc. Another way to 

increase ξy is to reduce the vertical emittance, which also looks problematic since it will lead to a 

significant decrease in the lifetime of the beams, which is determined by the scattering on the 

colliding bunch and the intra-bunch scattering (Touschek effect). 

 

 
Fig. 3.29  The equilibrium beam distribution in the plane of normalized betatron amplitudes, the 

vertical emittance, and the specific luminosity in dependence on ξy for the working point (0.545, 

0.570). The distribution density on adjacent lines of the level differ e times. Lco is the specific 

luminosity for the nominal parameters (ξy = 0.12). 

 

Besides, the choice of the operating point is determined not only by the BB effects but 

also by the nonlinear structure of the storage ring. The calculations show that, because of the 

strong nonlinear chromaticity, the dynamic aperture for particles with non-equilibrium energy is 

small near the half-integer resonance. Therefore it is necessary to raise the betatron tunes. If 

there is no need to increase the rated ξy, which already provides a luminosity of 10
35

 cm
-2

s
-1

, the 

choice of the betatron tunes becomes much wider: any red dot (see Fig. 3.28) to the right and 

above point B. The final choice will be made after the end of the optimization of the dynamic 

aperture. 

We can conclude that for the calculated parameters, the collision effects will not have a 

significant influence on the beam dynamics. The calculated value ξy = 0.12 is small and allows 

varying the operating point in a fairly wide range. If it can be moved closer towards the half-

integer resonance, the ultimate ξy grows. This opens up the possibility of obtaining higher 

luminosity. 

 

3.6. Longitudinal polarization at the IP 

 

Spin-polarized electrons arise on the photocathode of the source with energy of 100 keV 

to 200 keV and then are accelerated to the energy required in the experiment, 1 GeV to 2.5 GeV. 

A spin manipulator of the source can set any desirable direction of the electron spin at the point 

of their injection into the ring. It remains to arrange such a closed spin trajectory along the ring 

circumference that the spin is directed longitudinally at the point of the electron-positron colli-

sion.  
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3.6.1. Closed spin orbit. Spin rotators.  

 

 We suggest installing 5 spin rotators – Siberian snakes [27] – on the electron storage ring, 

each snake rotating the spin through 0180 around the longitudinal axis of the accelerator coordi-

nate system. Each snake consists of two SC solenoids separated by a mirror-symmetrical optical 

system of 7 quadrupole lenses, see Fig.3.30. The total integral of the field of the two solenoids is 

 

 26  T m,   if    E=2.5 GeVBdl B     

 

The transport matrix of the spin rotator, including the solenoids, must comply with the following 

two conditions: 1) zero 2х2 off-diagonal blocks, 2) spin transparency. Both these requirements 

are met for a full Siberian snake if [28] 

 

x y 1

cos(2 ) 2r sin(2 ) 1 0
T T  

(2r) sin(2 ) cos(2 ) 0 1

      
      

     
 

 

where   is the angle of spin rotation by one solenoid. For a full snake, cos(2 ) 1   . If 

/ 2  , the snake is called partial. Unfortunately, it yields to a full one and will not be consi-

dered here. 

 A method of compensation of the solenoid-introduced betatron coupling via inserting an 

optical system meeting the condition x yT T  between the solenoids was proposed in [29]. A big 

advantage of this method is no need to use any skew-quadrupoles. In this scheme the solenoid 

field may vary in a wide range without changing the strength of the quadrupole lenses, including 

their complete switching off, the coupling remaining zero in this case. Though, if one wants to 

leave the advance of the betatron phases unchanged throughout the insert, the field gradients in 

the lens still have to be slightly corrected. The main advantage is that there is no need to rotate 

the lenses around the longitudinal axis as it is with some alternative schemes of compensation of 

coupling also considered in [29]. 

 

Decoupling condition: Tx=-Ty (Litvinenko, Zholentz, 1980)

B B

F F F FD D D

090  090 

All quads are not skewed!
  

Fig. 3.30  Optical scheme of the spin rotator – the Siberian snake rotating the spin 

through
0180 around the axis of the solenoids. 

 

With an odd number of the snakes the spin in the arcs of the ring lies in the median plane 

and takes exactly the longitudinal direction in the middle of the arcs between the snakes. It is 

presented schematically in Fig. 3.31, where the equilibrium direction of the spins – a closed spin 

trajectory – in the ring with the three snakes evenly placed in azimuth is shown. 
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Polarization scheme with 3 snakes (arc=1200

+2 damping wigglers in the arc’s middle )

IP

snake1

snake2 snake3

damping

wiggler1

damping

wiggler2

 
 

Fig. 3.31  The equilibrium closed spin trajectory in the ring with three Siberian snakes. The 

depolarizing influence from the damping wigglers is minimal if they are situated in those places 

where the spin is longitudinal.   

 

3.6.2. Radiative relaxation of spins 

 

The larger the number of the snakes installed on the ring, the greater the depolarization 

time reached. The depolarization time increases proportionally to the square of the number of the 

snakes. We chose five snakes providing perfect preservation of the electron beam polarization 

across the energy range. At low-energy operation it is possible to use a smaller number of 

snakes. The analytical estimates of the azimuth-averaged squared modulus of the vector of the 

spin-orbit coupling for a ring with snkn Siberian snakes give the following result: 

 

 

2 2
2 2
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 
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

 

 

Here d is the spin-orbit coupling vector, 2 (0)d  is the squared modulus of it at the minimum 

point, 2d is its value averaged over the arc length, and (MeV) / 440.652E  is the spin fre-

quency. The azimuthal dependence of 2 ( )d  for the cases of 1snkn   and 3snkn   for the elec-

tron energy 1E   GeV is presented in Fig. 3.32.  Knowing the behavior of d in the ring, it is easy 

to calculate the time of the radiation spin relaxation as well as the equilibrium degree of radiation 

polarization. They are determined from the known formulas by Derbenev and Kondratenko [30]: 
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Here r is the radius of curvature of the orbit in the dipole magnets, b is the unit vector directed 

along the field in these magnets, n  is the unit vector of the equilibrium spin direction, v is the 

unit vector directed along the velocity, and the rest designations are standard.  
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Fig. 3.32  Azimuthal dependence of the squared modulus of the vector of the spin-orbit coupling 

at the energy 1E  GeV with one and three (dark blue dots) Siberian snakes.  

 

At the с-factory the wigglers are supposed to be used for the regulation of the radiative 

damping decrements, namely, to maintain the damping time of around 30 ms in the entire energy 

range of the complex. At low energy the wigglers are turned on for the maximum field, while at 

the maximum energy near 2.5 GeV the wigglers are completely turned off. When calculating the 

time of depolarization in the storage ring, it is necessary, of course, to consider the influence of 

the wigglers on this process. As seen in Fig. 3.33, the contribution of the damping wigglers 

strongly depends on the place of their location. If they stand in such segments of the ring where 

the modulus of the spin-orbit coupling is minimal (in the middle of the arc between the two 

wigglers), their effect is negligible. If they are distributed evenly over the ring, their influence is 

quite palpable. 
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Fig. 3.33  Dependence of the time of spin relaxation on the electron energy in the variant with 

five Siberian snakes. The solid curve corresponds to the uniform placement of the wigglers over 

the ring, and the dots show the preferable variant of placing the damping wigglers at points with 

the minimum modulus of the spin-orbit coupling.  

  

3.6.3. Time-averaged degree of polarization 

 

 With the Siberian snakes on the ring, the equilibrium degree of radiative polarization of 

the beams almost vanishes. This is a positive moment because a definite sign of beam 

polarization may lead to systematic errors in the analysis of the spin asymmetry of the processes 

of interest. It is planned to randomly inject several (up to a few hundreds) bunches of polarized 

electrons into different separatrices and mark all the recorded events with the number of the 

separatrix they correspond to. The loss of particles occurring mainly due to the bremsstrahlung 

on the counter beam, of course, must be made up for with the fresh-polarized electrons. As a 

result, some equilibrium polarization degree determined by the balance of particles surviving in 

the ring for different times will establish gradually. It is easy to show that the equilibrium 

polarization degree is equal to 

 

  rad beam
beam rad

beam rad beam rad

 
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   
 

 
 

 

 Here 90%beam   is the degree of polarization of the fresh beam; 0%rad  is the degree of the 

radiative self-polarization of electrons in the ring; 1000 secbeam   is the lifetime of the particles 

in the ring; rad is the time of the radiative polarization of the spins. Fig. 3.34 presents the plots 

of the time-averaged degree of electron beam polarization for 1, 3, and 5 snakes. These results 

were obtained analytically and confirmed by computations with the ASSPIRIN program [31, 

32]. It is seen from the figure that the variant with 5 snakes ensures a polarization degree of 

about 80% across the accelerator energy range. 
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Fig. 3.34  Time-averaged degree of electron polarization in the ring of the c-tau factory for 1, 3, 

and 5 snakes. 

 

3.6.4. Technical aspects of the realization of the spin rotators  

 

A set of two superconducting solenoids and seven quadrupole lenses should be created 

for each of the spin rotators. One solenoid is 2 m long and has a maximum field of 6.5 Tesla and 

a 4-cm aperture. It seems that a solenoid with such parameters can be cooled with a three-stage 

cooler and placed in just a vacuum cryostat without liquid helium. Such experiments using indi-

rect cooling of small superconducting devices are currently under way.  

 The total length of the Siberian snake is about 10 meters, or about 1.5% of the entire pe-

rimeter. All the quadrupole lenses have the same specifications as the main lenses of the ring. 

 We have investigated the issue of the field of tolerances for the deviation of the gradients 

of the lenses from the nominal values. No too severe restrictions on the precision of control over 

the currents of the lenses were found. In fact, deviations of the field in the lenses and solenoids 

of up to 10% lead to no substantial increase in the vertical emittance. 

 

3.7. Life time of the beams 

 

The life time of the beams depends strongly on the particle loss due to their scattering on 

the counter beam at the IP (Fig.3.35). This influence is proportional to the luminosity of the col-

lider 

 

L
dt

dN
  , 

 

where  is the cross section of the process and L is the luminosity. Naturally, the role of this in-

fluence increases with the luminosity.  
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Fig. 3.35  Inelastic scattering of the particles of the colliding beams.  

 

If the luminosity is considered constant, the dependence of the number of the particles on 

the time may be estimated approximately as  
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It is necessary to distinguish between elastic scattering,   eeee , and single 

bremsstrahlung from one particle in the field of another particle,   eeee . The cross 

section of the elastic process that leads to loss of a particle if the angle of its deviation exceeds 

the acceptance of the accelerator is in this case more than one order of magnitude smaller than 

the bremsstrahlung cross section. 

A standard quantum electrodynamics (QED) calculation of the Е-differential cross 

section of single bremsstrahlung gives the following: 
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where bEEy / , bE is the beam energy, and 0r  is the classical electron radius. Small 

momentum transfers corresponding to large impact parameters contribute to single 

bremsstrahlung. This makes the process cross-section sensitive to various macroscopic effects. 

As was shown in experiments on VEPP-4, the restriction of the impact parameters by the 

transverse dimension of the beam is the most important. 

  Single bremsstrahlung can be considered as the scattering of virtual photons 

accompanying an electron on a counter electron.  Virtual photons with an energy  fill a disk of 

the radius  /~ . The main contribution to the bremsstrahlung cross-section comes from the 

photons with the energy 24/~  E , for which the effective "disk" has a characteristic radius 

 

4
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E
 mm       at      01.0/ bEE . 

 

Since the transverse beam size is <<4 mm, not all virtual photons encounter electrons, 

and a standard QED calculation gives an overestimated cross section. The impact parameters of 

the process were allowed for correctly in [33, 34], and the results of these studies are used below 

to estimate the lifetime of the beams at the с-factory. The single-bremsstrahlung cross-section 

obtained in the standard manner and subject to the amendments is shown in Fig. 3.36. 
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Fig. 3.36  Bremsstrahlung cross-section (to one side) at 5.2bE GeV, 39.0y  m and 

14x m. The upper curve is the result of a standard QED calculation; the lower one was ob-

tained with the impact parameters taken into account. 

 

The rate of the particle loss and the beam life time determined by single bremsstrahlung, 

calculated for the с-factory parameters subject to the restriction of the impact parameters are 

shown in Fig.3.37. The minimum life time in the energy range of ~1.82.5 GeV is 1600 seconds. 

 

   

Fig. 3.37  Particle loss (left) and beam life time (right) for single bremsstrahlung. 

 

For low beam emittance and the fairly large bunch intensity it is expected that the intra-

bunch scattering of particles (Touchek effect), which is determined as  
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where   is the energy aperture 
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and the )(D  function is determined as [36]  
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will be one more important effect influencing the life time of particles at the с-factory.  

The energy aperture, the size of which influences the “Touchek” life time very much, is 

chosen as the least of the RF acceptance and the energy dynamical aperture, the latter being de-

terminative in this case.  

 The life time determined by the intra-bunch scattering was modeled for a realistic accele-

rator structure using a modified Piwinsky algorithm [37]. The results of the modeling at energy 

of 2 Gev are presented in Fig.3.38. 
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Fig. 3.38  Life time determined by the intra-bunch scattering as a function of the betatron coupl-

ing for energy of 2 GeV. 

 

3.8. Collective effects 

3.8.1. Collective effects  

The interaction of an intense beam of charged particles with the electromagnetic fields 

induced by it in a vacuum chamber (wake-fields) leads to various collective effects in the beam 

dynamics. These effects depend on the beam intensity and manifest themselves with a large 

number of particles in the beam. The most significant result of the collective effects is the 

instability of beam motion. When the resonance conditions are met, small deviations in the beam 

position or energy can increase because of the beam interaction with the wake-fields. Such 

positive feedback leads to instability of the oscillations and, consequently, beam loss or 

degradation. 

In the frequency domain, the beam interaction with the components of the vacuum 

chamber through the wake-fields is described with the frequency-dependent coupling 

impedances. The presence of sections with narrow-band impedance (e.g. the parasitic higher 

modes of the accelerating cavities) in the accelerator may give rise to multi-bunch instability, 

and the broadband impedance can cause single-bunch instability of the beam. The foundations of 

the theory of collective effects, instabilities, and coupling impedances are given in [38, 39, 40]. 

The vacuum chamber of accelerator as a whole is usually represented as a broadband 

impedance obtained by summing the broadband impedances of all the components of the 
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chamber. The broadband impedance can be assumed additive since the wake-fields decay 

rapidly, and the interference of the beam-excited wake-fields in different components of the 

vacuum chamber can be ignored in practice. The value of the total broadband impedance is used 

to estimate the single-bunch stability of the beam motion and is a criterion of the quality of the 

vacuum chamber design and manufacturing. 

For estimating the maximum allowable coupling impedances of the collider to design, it 

would be useful to consider the experience of the existing B-factories – KEKB and PEP-II. It 

makes sense to compare the parameters of the storage rings, the beam energy of which is close to 

energy of 2.5 GeV, which was chosen for the с-factory. Those are the KEKB LER with energy 

of 3.5 GeV and PEP-II LER with energy of 3.1 GeV. The energy of the KEKB HER and PEP-II 

HER storage rings is 8 GeV and 9 GeV, respectively, which is significantly higher than the 

design energy of the с-factory under consideration. 

The main parameters of KEKB LER, PEP-II LER and с-factory that are of interest for 

the analysis of the collective effects as well as the results of the instability estimates are pre-

sented in Tables 1 and 3 (see Attachment). 

3.8.2. Beam lengthening 

The beam-induced electromagnetic fields change the shape of the accelerating RF field 

that affects the beam, which results in the distortion of longitudinal distribution of the particles 

and beam lengthening, while the energy spread does not change. The beam lengthening caused 

by the potential well distortion is described with the following equation: 
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where Ib is the beam current, 
E

c E

s

s






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0

0   is the bunch length at a zero current, 
E

E
 is the 

relative energy spread, R is the mean radius of the accelerator, α is the momentum compaction 

factor, s is the synchrotron frequency (in units of the revolution frequency 0). The effective 

impedance  
eff || / nZ , which is often used to estimate the beam stability, is the weighted norma-

lized impedance nZ /||  averaged over the beam frequency spectrum [44]. There is an approx-

imate relation between the low-frequency broad-band impedance and the effective one, which 

depends on the rms bunch length. For short bunches, if the rms bunch length cst /   is by far 

less than c/1 , where bcc /  is the characteristic frequency of the impedance (b is the charac-

teristic transverse dimension of the vacuum chamber), we have    
BB ||eff || // nZnZ tc , while 

for long bunches, i.e. if ct  /1 , it may be considered that    
BB ||eff || // nZnZ  .  

If the beam current exceeds a threshold value, the interaction of the beam with the longi-

tudinal impedance leads to microwave instability of the longitudinal motion. Above the instabili-

ty threshold, increase in the beam current is accompanied by growth both in the longitudinal di-

mension and in the beam energy spread. For a relativistic beam, the peak value of the threshold 

bunch current Ip can be estimated using the following formula [45, 46]: 
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where 
E

E

p

p 
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


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2




 is the width of the particle distribution throughout the longitudinal mo-

mentum, which is equal to the energy spread 
E

E
 for relativistic beams. For a bunch with Gaus-

sian density distribution and the rms length s, the relation of peak bunch current Ip and the av-

erage current Ib is: 
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The average threshold current of the microwave instability is determined by the following ex-

pression [47]: 
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Fig. 3.39 The average threshold current of microwave instability 

Fig. 3.39 shows microwave instability threshold current versus the normalized 

longitudinal impedance. It can be seen that the design bunch current of 4.4 mA will not exceed 

the instability threshold at normalized impedance less than 70 milliohms. For comparison, the 

KEKB LER threshold current calculated by formula (3.15) using parameters from Table 1 is 0.1 

mA (the working bunch current is 0.5 mA); the PEP-II LER threshold current is 3 mA (the 

bunch current is 1.3 mA). 

Above the threshold of microwave instability, the bunch lengthening as a function of the 

current is described for a relativistic electron or positron beam with the Gaussian distribution of 

linear density by the following cubic equation [42, 43]: 
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where 

cr 

||

n

Z
 is the impedance value at the critical frequency bcc / , which mainly deter-

mines the turbulent bunch lengthening. Fig.3.40 shows the plots of the bunch length as a func-

tion of the bunch current for three values of the normalized longitudinal impedance at energy of 
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2 GeV and the fixed accelerating voltage URF=0.99 MV. It should be noted that the KEKB LER 

bunch stretching is about 20% at the working current.  
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Fig. 3.40  Bunch lengthening as a function of the current. 

If it is necessary to keep the longitudinal beam size at any current, the accelerating RF 

voltage should be increased in order to compensate the bunch lengthening, see Fig. 3.41. One 

can see the undesirability of exceeding considerably the microwave instability threshold because 

it leads to a significant increase in the RF voltage required for the bunch lengthening 

compensation. 
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Fig. 3.41  Compensation of the bunch lengthening, E=2 GeV. 

3.8.3. Coherent energy loss 

The real part of longitudinal impedance causes coherent loss of the beam energy that is in 

quadratic dependence on the beam charge [39]:  
2

||qkE  .  (3.16) 
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The coefficient of proportionality ||k  is called the longitudinal loss factor. It depends on both the 

properties of the vacuum chamber that are characterized by the impedance ||Z  and on the longitu-

dinal beam density distribution λ: 





0

2

|||| )()(Re
1




dZk , 

where )(|| Z is the total broadband longitudinal impedance of the chamber and )( is the 

Fourier transform of the beam density distribution )(t . Similarly to the loss caused by 

synchrotron radiation, the coherent energy loss is compensated in the accelerating RF cavities at 

each beam turn. 

Fig. 3.42 shows the graphs of the coherent energy loss as a function of the beam current 

at 2 GeV , the fixed accelerating voltage URF =0.99 MV (a) and at the fixed bunch length s =10 

mm (3.16).  
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Fig. 3.42  Coherent energy loss, E= 2GeV. 

3.8.4. TMC instability (fast head-tail) 

The resonant interaction between the beam and the short-lived transverse wake-fields, 

which is characterized by the transverse broadband impedance, causes the instability of the 

transversely-coupled modes (transverse mode coupling, TMC, or fast head-tail). The wake fields 

induced by the head part of the bunched beam affect the particles of its tail (head-tail-effect). 

Due to the synchrotron oscillations, the head and the tail of the beam periodically interchange; 

when the resonance conditions are met, there occurs an unlimited increase in the amplitude of 

betatron oscillations, which causes losses of the beam particles till the threshold intensity. 

For a vacuum chamber of circular cross section, the relation of longitudinal and 

transverse dipole impedances is described by the following formula (a consequence of the 

Panofsky-Wenzel theorem): 

n

Z

b

R
Z

||

2

2
 , 

where b is the chamber radius. This formula can also be used for rough estimates in case of a 

chamber of variable cross section if b is set equal to the average half-height of the chamber. 

The interaction of the beam with the reactive part of transverse impedance leads to the 

coherent shift of betatron tunes. At low currents this shift depends linearly on the beam current 

[38]: 
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where ZIm  is the total broadband reactive impedance weighted by the beta function. The 

coherent shift of the vertical betatron tune of the с-factory, computed by formula (3.17), is 

y/Ib = 0.36 A
1

 at E = 2 Gev, nZ /||  = 0.1 Ohm, and Z  = 39 kOhm. For comparison, the 

coherent shift of the vertical betatron tune of the KEKB LER is y/Ib = 4.2 A
1

 (measurement) 

and of the PEP-II LER, y/Ib = 0.23 A
1

 (calculation).  

The threshold current of the TMC instability can be estimated from the coherent shift of 

the betatron tune in (3.17): 
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(3.18) 

Fig.3.43 shows the graphs of the threshold current of the TMC instability, (3.18), in 

dependence on the normalized longitudinal impedance under the assumption that the transverse 

impedance is proportional to the longitudinal one, in accordance with the Panofsky-Wenzel 

theorem. For the KEKB LER the threshold current is Ith = 1.5 mA at Z = 99 kOhm, for the 

PEP-II LER Ith = 32.6 mA at Z = 22.5 kOhm. 

 
Fig. 3.43 . The threshold current of the TMC instability. 

3.8.5. Longitudinal multi-bunch instability 

The interaction of the beam with the high-order modes (HOMs) of the accelerating RF 

cavities (narrowband impedance) leads to excitation of long-lived wake-fields, the influence of 

which on next bunches may cause longitudinal instability in the multi-bunch mode [48, 49, 50]. 

If Nb bunches are uniformly distributed over the perimeter of the accelerator, the nth oscillation 

mode is excited when the resonance condition 

  0 sb

HOM

r npN  , 

is met, where p is an integer and s is the synchrotron tune. The impedance of every longitudinal 

mode can be written as  
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Since the impedance of each high-order mode is characterized by the corresponding resonance 

frequency HOM

r , shunt resistance HOM

sR  and quality factor Q, the instability rise time should be 

estimated separately for each mode: 
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Here Ib is the current of one bunch. 

For the motion to be stable, the characteristic time of the radiation damping of the 

longitudinal oscillations must be less than the rise time of (3.19) for any mode in the operating 

range of the beam current. Taking the radiation damping into account, we can formulate the 

stability condition limiting the HOM

r

HOM

sR  value for any HOM of the RF cavities: 
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For the с-factory, Ohm1013HOM

r

HOM

sR   at E = 2 GeV, Nb = 390, and Ib = 4.4 mA 

3.8.6. Transverse multi-bunch instability 

The transverse narrow-band impedance of the high-order modes of RF cavities may cause 

the transverse multi-bunch instability, the rise time of which can be estimated using a formula 

similar to (3.19) [49]: 
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where HOM

sR    is the shunt resistance of the transverse mode and RFC   is the beta function at the 

cavity location. The resonance condition for the nth oscillation mode excitation looks as follows: 

  0  npNb

HOM

r , (3.20) 

Taking the radiation damping into account, we can also formulate the stability condition limiting 

the HOM

sR   value for any high-order mode of the cavities: 
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For the с-factory kOhm 13

HOM

sR  at E = 2 GeV, Nb = 390, Ib = 4.4 mA 

Besides the high-order modes of the RF cavities, the transverse multi-bunch instability 

may be excited due to beam interaction with the resistive impedance of the vacuum chamber 

walls (resistive wall) at the frequencies (3.20). The instability rise time can be estimated as fol-

lows [51]: 
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The frequency dependence of the resistive-wall impedance of a cylindrical vacuum 

chamber with a radius b and a length L is described by the following expression:  
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where Z0 = 120π Ohm is the free space impedance and 





2
s  is the skin depth. Thus, the 

low-frequency impedance is the most dangerous as concerns the beam stability. For the с-
factory the minimum time of the rise time of transverse multi-bunch instability is estimated as 

 ≈ 30 ms at the frequency  MHz12)1( 0  fy  at E = 2 GeV, Nb = 390, and Ib = 4.4 mA 

3.9. Stabilization of the beam parameters and the feedback systems 

3.9.1 Goals of stabilization 

Ensuring the efficient operation of lepton colliders and synchrotron light sources always 

imposes high demands on the stability of beam parameters. The disturbing factors, the influence 

of which may reduce the effectiveness of the accelerator include: field deviation in the magnets, 

alignment errors, seismic vibration, thermal expansion of the magnets and of the accelerating RF 

cavities, the temperature drift of parameters as well as other dynamic effects. Completely self-

automated control of such key beam parameters as the orbit, betatron tunes, coupling factor, 

chromaticity, energy, etc. with continuous correction of the perturbation introduced by the above 

factors becomes essentially an integral part of the control systems of modern accelerators. 

The diversity of the modern feedback systems results from the variety of requirements to 

the feedback parameters in accelerators of different types. Let consider the basic principles of 

construction of systems for stabilization of beam parameters [52]. Requirements to the stability 

depend on the properties and quality of beams used in experiments. The beam stability in the 

collider is a necessary condition for the luminosity optimization in high energy physics 

experiments. Just as in synchrotron radiation sources [53], the orbit stabilization is necessary to 

minimize the emittance and to provide stable beam convergence at the IPs. Besides the orbit, the 

feedback system is used to stabilize the betatron tunes so that to prevent crossing of the betatron 

resonances during acceleration, which may cause loss of beam particles. 

Various disturbances affecting the beam orbit, betatron tunes, betatron coupling, 

chromaticity and energy can be divided into three groups according to their sources: 

External perturbations: changes in the ambient temperature and the atmospheric pressure; 

mechanical movement of soil caused by seismic activity, tidal waves and human activity 

(industry, transport). These disturbances are transmitted into the particle beam mainly through 

the quadrupoles, the beam focusing in which depends on the transverse displacements. 

2. Intrinsic perturbations in the accelerator: variation of fields in the magnets, the noise 

caused by the flows of cooling fluids, the vibration of air pumps, the eddy currents. 

3. Failures of individual elements, which are important for large machines, where failure 

of one of tens or even hundreds of correcting magnets can stop the experiment for the time of 

repair. 

The characteristic time scale of the perturbations may be long-term (a few months to 

several days), medium (days or hours) or short-term (hours to milliseconds). The applicability of 

feedbacks correcting slow beam perturbations is eventually limited by the thermal drift, the noise 

and the systematic errors of the measuring and correcting circuits. Because of the beam 

sensitivity to the thermal drift, in the modern machines it is necessary to stabilize not only the 
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orbit but also the temperature of the experimental hall, the accelerator tunnel, the vacuum 

chamber and the cooling water within ± 0.1 °C. 

External disturbances, beam parameters and the strength of the correctors are functions of 

time. Therefore, designing feedback systems is often accompanied by a separate analysis of the 

scheme for correction of deviations of beam parameters from the desired values for a given 

constant perturbation (space domain) and of time-dependent (time domain) processes describing 

the operation of the system in real time. Such a separation allows making the system operation 

more flexible, especially at possible failures of individual elements when quick adjustment of the 

feedback parameters is required. 

3.9.2 Correction algorithms  

For most accelerators, the influence of the correcting elements on such parameters as 

orbit, betatron tune, betatron coupling, chromaticity and energy can be considered linear in the 

first approximation; the matrix formalism can be used for calculating the correction. The relation 

of the measured beam parameters and the corrective action in the linear approximation is 

described with the following matrix equation: 
3fx


R , (3.21) 

where ),,( 1 Nxxx 

  is the beam parameter vector measured with N pickups; ),,( 1 Nfff 


  is 

the vector of M corrective actions; R is the response matrix, the elements Rij of which describe 

the response of the ith pickup to a variation in the strength of the jth corrector. So, in case of cor-

rection of a closed beam orbit, x


 is the set of orbit deviations measured with beam position mon-

itors and f


 are the currents of the dipole magnet correctors. 

A space-domain algorithm of correction is being developed to compute the strengths of 

the correctors  )(,),(lim 1 tftff M
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  that minimize the deviation of the beam parameter r at a 

given constant perturbation: 
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where R is the response matrix; x
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 is the vector of the actual measured values; 0x
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vector. The vector norm is defined as follows: 
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It follows from (3.21) that the correction algorithm essentially consists in the inversion of 

the response matrix R. However, in practice the matrix R is often singular or almost singular, so 

one of the most widely used algorithms is the singular value decomposition (SVD). The response 

matrix can be written as T
VUR λ  and the inverse matrix, as T

UVR
11 λ  ; where U is the 

m×n full unitary matrix; λ is the diagonal matrix consisting of the eigenvalues of the matrix R; 

and V is an orthogonal matrix, the columns of which are the eigenvectors of the matrix R. To 

eliminate singularities at the calculation of R
−1

, the λk
−1

 values corresponding to small 

eigenvalues λ are set equal to zero. The number of the eigenvalues used to compute the inverse 

matrix R
−1

 is chosen as a compromise between the accuracy and reliability of the correction 

algorithm: a larger number of eigenvalues provides a better convergence, but at the same time 

the correction process becomes more sensitive to the measurement errors and the noise of the 

electronics. In addition, the response matrix used for the correction can deviate from the real 

matrix of the magnet lattice, and therefore the correction process may consist of several 

consecutive iterations. 
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3.9.3 Computation of the transfer functions 

Analysis of the time-domain processes occurring in the beam parameter stabilization sys-

tem allows optimizing the system operation in real time. A typical scheme of a closed single-

input-single-output (SISO) automatic control system is presented in Fig.3.44. 

 
Fig. 3.44  First-order automatic control system 

The controlled process and the control device (controller) are characterized by the 

frequency-dependent transfer functions G(p) and D(p), respectively, where p is the complex 

Laplace frequency. The stability of the system and its sensitivity to perturbations and noise are 

determined by the following functions: 
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where T(p) is the full (nominal) transfer function; Sd(p) is the nominal sensitivity, which deter-

mines the perturbation suppression by the feedback; Si(p) is the sensitivity to input perturbations; 

Su(p) is the sensitivity of the control system. The state variables are also denoted in  3.44: r is the 

target of correction; y is the variable to control; x is the error signal; u is the correction action; δm 

is the measurement noise; δi and δd are the perturbations at the input and output of the process, 

respectively. 

The classic computation of feedback is based on the study of zeros of the denominator in 

equations (3.22) using, for example, the Nyquist stability criterion in the following formulation: 

a closed-loop system is stable if the hodograph of the transfer function D(p)G(p) of the open-

loop system does not include the (-1, 0i) point in the complex plane. If an open-loop system is 

unstable, for the closed-loop system stability it is necessary and sufficient that the hodograph of 

the transfer function D(p)G(p) of the unstable open-loop system includes the point with the 

coordinates (-1, 0i) n/2 times, where n is the number of the roots of the characteristic equation of 

the open-loop system with a positive real part. In this case a number of conditions must be 

observed, such as providing the necessary bandwidth, minimizing the mavericks during the 

regulation, providing a wide dynamic range of corrective actions as well as achieving maximum 

reliability in relation to the measurement errors and the model inaccuracies. 

Typically, the feedback systems to stabilize the beam parameters in accelerators are 

developed and put into operation independently of one another, and the study of their 

interdependence and the reduction of parasitic relationships are often neglected. Nevertheless, 

for the systems to work stably and reliably it is necessary to take into account the possible cross-

talk coupling between several parallel and possibly nested feedback loops at the design stage. 

A typical cross-talk coupling is inherent, for example, to the systems for stabilization of 

the orbit and betatron tunes: although beam orbit stabilization at the micron level inhibits the 
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undesirable effects associated with the orbit deviation in the magnets and has a positive effect on 

the beam lifetime, it also imposes substantial limitations on other systems, in particular, those 

intended to stabilize the betatron tunes and the chromaticity, the measurement of which requires 

excitation of the beam jitter and, in case of chromaticity, even a change in the longitudinal 

momentum. 

3.9.4 Orbit stabilization 

Beam trajectory stability is essential for efficient operation of particle accelerators. 

Identification and minimization of noise sources at the accelerator design stage can significantly 

improve the situation. However, in many cases the required level of stability of the trajectory can 

only be achieved by using feedback systems. In particular, it is impossible to do without fast 

feedback in cases when the most severe conditions are imposed on the short-term (milliseconds - 

seconds) and medium-term (minutes - days) beam stability [54]. 

The main cause of beam trajectory distortion on the short-term and mid-term scales is 

usually a mechanical displacement of the magnets, especially quadrupoles, caused by vibrations 

of the soil, thermal effects, coolant motion, etc. Other sources of trajectory instability are 

oscillations of the supply current, which contain the harmonics of the mains frequency as well as 

stray electrical and magnetic fields. 

In a typical feedback scheme intended to stabilize the beam trajectory, the input signals 

are supplied by a set of beam position pickups, and the corrective action is carried out using 

magnetic dipole correctors or electromagnetic kickers. The regulators are usually programmable 

signal processors of various types. In a local scheme, three or four magnetic correctors are used 

to create a local compensated effect stabilizing the position and angle of the electron beam at a 

desired point without affecting the rest of the orbit. A global feedback scheme which includes all 

the beam pickups and all the correcting dipole magnets is most often used to minimize the 

standard deviation of the orbit from a golden one, though other correction strategies are also 

possible. 

The correction algorithm is usually based on the inversion of the response matrix, which 

relates the beam position at the locations of the pickups to the currents of the magnetic 

correctors. The inversion is executed by the method of expansion of the matrix in eigenvalues. 

This method allows us to represent a system of an arbitrary number of pickups and correctors 

interrelated via the response matrix in the transformed space, where each pickup is connected 

with one virtual corrector through a single coefficient. These coefficients correspond to the 

eigenvalues of the diagonal response matrix in the transformed space, which allows passing from 

the original MIMO system to a set of independent SISO feedback loops for each of the 

transformed channel of correction. The dynamics of each channel are determined by the low-

frequency characteristic of the corrector, mainly by the eddy currents in the magnet yoke and the 

walls of the vacuum chamber. Another important parameter is the total delay time of the system, 

determined by the time of measurement and data processing and transmission. The typical delay 

time of modern feedback systems [55, 56, 57] is in the order of several hundreds of nanoseconds. 

Thus, each correction channel can be quite accurately described via a model consisting of a first-

order low-pass filter and a delay line. 

A proportional-integral-differential controller (PID controller) is most commonly used as 

a control element. With a feedback operating frequency of up to 10 kHz the optimal choice of 

the PID controller parameters allows effective stabilization of the beam orbit in the frequency 

band of 100-150 Hz. The bandwidth in local loops of a fast feedback system can be extended 

using correctors without magnetic cores, while a slower global feedback system usually includes 

all the available standard orbit correctors. 

The stable components of the perturbation spectrum such as the mains frequency and its 

harmonics can be effectively suppressed with special narrowband feedback loops. Since filters 

tuned to different frequencies are decoupled, they can operate in parallel. Moreover, since the 

perturbations introduced by the harmonics of the mains frequency usually change very little in 
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time, they can be suppressed even if the perturbation frequency exceeds the frequency limit of a 

system with open feedback system. 

In systems for fast orbit stabilization, data are processed using different computing 

platforms such as field-programmable gate arrays (FPGA), digital signal processors (DSP) and 

general-purpose computers with real-time operating system, which are integrated in the control 

system of accelerator complex. Ethernet with modified low-level drivers is often used in fast 

communication networks. 

3.9.5 Fast feedback systems 

At present, most accelerator facilities are equipped with fast feedback systems for the 

turn-by-turn suppression of the transverse and longitudinal instabilities of beam motion. 

The development of digital technology allows creating bunch-by-bunch feedback 

systems, which control the motion of each bunch in the multi-bunch mode [58, 59, 60]. All 

digital feedback systems are similar to one another in their design. The flowchart of a multi-

bunch feedback system is shown in Fig. 3.45. Electrostatic or stripline pickups, the signals of 

which are processed by analog hybrid circuits outputting signals proportional to the horizontal 

and vertical coordinates of the beam and its intensity, are used as the beam position sensors. 

These signals are then detected and digitized. The digital data are processed either by field-

programmable gate arrays (FPGA) or by a digital signal processor (DSP), which calculates the 

strength of the pulse kicker, which impacts on the beam. Filters with finite impulse response, 

FIR-filters, are widely used for signal processing. 

 
Fig. 3.45 Scheme of a digital feedback system. 

It should be noted that the use of stripline pickups and kickers with the directivity allows 

simultaneous stabilization of the electron and positron bunches circulating in opposite directions, 

the same striplines used for both types of particles [61]. 

Using two pickups allows calculating the transverse beam position and momentum at 

each turn. In the linear approximation, the coordinate transformation by the section of magnet 

lattice between the pickups looks as follows: 

  12121121121212 sin'sincos   xxx ,  (3.23) 

where x1,2, x'1,2, β1,2, α1,2 are the values of the position, momentum, and the lattice functions at the 

first and second pickup, respectively; θ12 is the betatron phase advance in this section. Conver-

sion of (3.23) allows expressing the transverse momentum of the beam center of mass at the 

azimuth of the first pickup via the x1 and x2 positions measured by both the pickups. Applying a 

similar conversion, we obtain the beam position xK and momentum x'K in the kicker. 
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θ1K is the betatron phase advance in the section between the first pickup and the kicker; βK and 

αK are the lattice functions at the azimuth of the kicker.  

The kicker voltage is calculated as follows: 
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where ReKFB and ImKFB are the coefficients of the resistive and reactive feedback, respectively; 

E is the beam energy; L is the kicker length; d is the distance between the plates.  

So, the signal processing should consist in the following operations: 

 setting the feedback coefficients ReKFB and ImKFB; 

 measuring the beam position in the x1 and x2 pickups; 

 calculation of the beam position and momentum in the kicker by formulae (3.24) 

and (3.25); 

 calculation of the kick amplitude by formula (3.26). 

Note that all the values in the formulae except x1 and x2 are computed beforehand, and the 

signal processor is used for fast computation of expressions of the ax + by type. Fig.3.46 presents 

an example of computer simulation of the feedback in the Matlab-Simulink environment. 

 

Fig. 3.46  Computer simulation of feedback system. 

In the longitudinal feedback systems, the input signal is the deviation of the beam phase 

from the equilibrium one and broadband cavities are used as kickers [62, 63]. 

The technique of direct digitization of the RF signal of beam position pickups has 

developed recently [64]. Direct digitization allows transferring the signal to the low-frequency 

region and detecting the signal without complex analog electronics. This simplifies the system 

and reduces its cost as well as makes its setting more convenient. 
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ATTACHMENT 

 
Table 1. Parameters of KEKB, PEP-II and the C--factory 

 KEKB 

LER 

KEKB HER PEP-II LER PEP-II HER C-tau BINP 

Energy, GeV 3.5 8.0 3.1 9.0 2.0 

Circumference, m 3016.26 3016.26 2199.3 2199.3 766.6 

Bunch, length, mm 4 4 11 11 10 

Energy spread 7.1·10-4 6.7·10-4 8.1·10-4 6.1·10-4 8.4·10-4 

Bunch-to-bunch distance, m 0.59 0.59 1.26 1.26 1.77 

Horizontal emittance, nm 18 18 50  8 

Vertical emittance, nm 0.36 0.36 2  0.04 

Synchrotron frequency 0.01-0.02 0.01-0.02 0.03 0.05 9.3·10-3 

Betatron tune (hor.) 45.52 47.52 36.57 24.57 47.54 

Betatron tune (ver.) 45.08 43.08 34.64 23.64 30.57 

Average beta function (hor.), m 10 10 10.84 14.5 15 

Average beta function (ver.), m 10 10 9.95 13.84 15 

Momentum compaction factor (1-2)·10-4 (1-2)·10-4 1.31·10-3 2.41·10-3 9.07·10-3 

Bending radius, m 16.3 104.5   8.25 

Bending magnet length, m 0.915 5.86   0.454 

RF voltage, MV 5-10 10-20 5.12 18.5 0.99 

RF frequency, MHz 508.887 508.887 476 476 500 

RF harmonic number 5120 5120 3492 3492 1300 

Revolution frequency, kHz 99.4 99.4 136.3 136.3 391 

Radiation damping time (long.), ms 43/23 23 40 37 15 

Energy loss to SR, MeV/turn 0.81/1.5 3.5 0.87 3.57 0.343 

Total radiation power, MW 2.1/4.0 3.8   0.586 

Particles per bunch 3.3·1010 1.4·1010 6·1010 2.7·1010 7·1010 

Bunch current, mA 0.52 0.22 1.3 0.59 4.4 

Bunch peak current, A 158 67 104.5 47 134 

Total beam current, A 2.6 1.1 2.1 1.0 1.71 

Vacuum chamber Cu 1 

Ø94 mm2  

NEG 

inserts 

Cu 

racetrack3  

104×50mm2  

Ø50mm 

NEG stripes 

Straight sec-

tions: 

stainless steel 

Ø94mm 

arcs: Al  

ellipt. 

95×59 mm2 

+antechamber 

1300 m: 

copper, 

900 m:  

stainless 

steel 

copper-

plated alu-

minum 

100×50 mm2 

1 – low photodesorption coefficient, high thermal conductivity, possibility of shielding the X-rays. 
2 – in order to avoid the resistive-wall multi-bunch instability. 
3 – in order to minimize the gap in the dipole magnets. 
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Table 2. Estimates for the instabilities at KEKB, PEP-II and the C- factory 

 KEKB LER KEKB HER PEP-II LER PEP-II HER C-tau BINP 

Microwave instability  
2

0

/

2










Ee

E

nZR
I Es

th

  

Ith=7.4·10-6 В/(Z/n) 

Ith=0.1 mA @ 
Z/n=72·mOhm 

Ib=0.52 mA 

Ith=1.5·10-5 

В/(Z/n) 
Ith=0.2 mA @ 

Z/n=76·mOhm 

Ib=0.22 mA 

Ith=2.1·10-4 В/(Z/n) 

Ith=3 mA @ 
Z/n=71·mOhm 

Ib=1.3 mA 

Ith=2.2·10-4 

В/(Z/n) 
Ith=9 mA @ 

Z/n=76·mOhm 

Ib=0.59 mA 

Ith=2.7·10-4 

В/(Z/n) 
Ith=2.7 mA @ 

Z/n=100·m  

Ib=4.4 mA 

Bunch lengthening ~20% ~20%   ~50% 

TMC instability 

eE

ZR

I s / 8

2

0 





 




 
 

e

E

ZR
I ss

th









 4

2

0  

y/Ib=3.4 А-1 

(design) (0.38 - 

CDR) 
Ith=1.5 mA@ 

ZT=99 kOhm 

y/Ib =4.2 А-1 

y/Ib =1.5 А-1 

(measured.) 

y/Ib =0.44 

А-1 (design) 

Ith=11.4 mA@ 
ZT=29 kOhm 

 

y/Ib =0.23 А-1 

(design) 

Ith=32.6 mA@ 
ZT=22.5 kOhm 

 

y/Ib =0.1 А-1 

(design) 

Ith=98.2 mA@ 
ZT=20 kOhm 

 

y/Ib =0.36 

А-1 (design) 

Ith=13.1 mA @ 
ZT=39 kOhm 

Longitudinal multi-bunch in-
stability – HOMs of the RF 

cavities 

60 ms 150 ms    

Transverse multi-bunch insta-

bility – RF HOMs of the RF 

cavities 

30 ms 80 ms    

Transverse multi-bunch insta-

bility – resistive-wall CBI 
 

~5 ms 

(suppressed by the 
feedback) 

 hor.: 1.41 ms 

ver.: 0.92 ms 
feedback damping 

time of 0.31 ms 

hor.: 5.56 ms 

ver.: 3.85 ms 

hor.: 170 ms 

ver.: 8.6 ms 

Multi-bunch instability – ions  ~1 ms (2D 

modeling)  
feedback is 

needed 

Solenoids with a 

field of 30 G are 
used 

  

Multi-bunch instability – elec-
tron clouds 

>0.4 ms 
Solenoids+feedback 
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